
Balzano Informatik AG www.balzano.net

Zwicky-Platz 4, 8304 Wallisellen info@balzano.ch

IPA-DOCUMENTATION 2021

IMPLEMENT A DICOM CLIENT CONTEXT CLASS FOR UNIT TESTING

Author Gabriel Schafflützel

Responsible specialist Enes Mujak

Main expert Melanie Meneghini

Secondary expert Johannes Biederstädt

Vocational trainer Rolf Ryser

https://www.balzano.net/
mailto:info@balzano.ch

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 2 of 114

CONTENTS

Part 1 .. 7

1 Preface ... 7

2 Work Environment and Preparations .. 8

2.1 Initial situation ... 8

2.2 Detailed Work Instructions ... 8

2.3 Project Organization .. 10

2.4 Means and Methods .. 11

2.5 Prior Knowledge .. 11

2.6 Preliminary Work ... 11

2.7 New Learning Content ... 11

2.8 Work In The Last 6 Months ... 11

2.9 Organization of The Work Results ... 11

3 Timetable ... 12

4 Daily Work Journal ... 13

4.1 7th of April 2021 ... 13

 Daily Meeting with Responsible specialist .. 13

 Completed Work .. 13

 Achievements ... 13

 Problems .. 13

 Assistance .. 13

 Conclusion ... 13

4.2 8th of April 2021 ... 14

 Daily Meeting with Responsible specialist .. 14

 Completed Work .. 14

 Achievements ... 14

 Problems .. 14

 Assistance .. 14

 Conclusion ... 14

4.3 9th of April 2021 ... 15

 Daily Meeting with Responsible specialist .. 15

 Completed Work .. 15

 Achievements ... 15

 Problems .. 15

 Assistance .. 15

 Conclusion ... 15

4.4 12th of April 2021 ... 16

 Daily Meeting with Responsible specialist .. 16

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 3 of 114

 Completed Work .. 16

 Achievements ... 16

 Problems .. 16

 Assistance .. 16

 Conclusion ... 16

4.5 13th of April 2021 ... 17

 Daily Meeting with Responsible specialist .. 17

 Completed Work .. 17

 Achievements ... 17

 Problems .. 17

 Assistance .. 17

 Conclusion ... 17

4.6 14th of April 2021 ... 18

 Daily Meeting with Responsible specialist .. 18

 Completed Work .. 18

 Achievements ... 18

 Problems .. 18

 Assistance .. 18

 Conclusion ... 18

4.7 15th of April 2021 ... 19

 Daily Meeting with Responsible specialist .. 19

 Completed Work .. 19

 Achievements ... 19

 Problems .. 19

 Assistance .. 19

 Conclusion ... 19

4.8 16th of April 2021 ... 20

 Daily Meeting with Responsible specialist .. 20

 Completed Work .. 20

 Achievements ... 20

 Problems .. 20

 Assistance .. 20

 Conclusion ... 20

4.9 19th of April 2021 ... 21

 Daily Meeting with Responsible specialist .. 21

 Completed Work .. 21

 Achievements ... 21

 Problems .. 21

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 4 of 114

 Assistance .. 21

 Conclusion ... 21

4.10 20th of April 2021 ... 22

 Daily Meeting with Responsible specialist .. 22

 Completed Work .. 22

 Achievements ... 22

 Problems .. 22

 Assistance .. 22

 Conclusion ... 22

4.11 21th of April 2021 ... 23

 Daily Meeting with Responsible specialist .. 23

 Completed Work .. 23

 Achievements ... 23

 Problems .. 23

 Assistance .. 23

 Conclusion ... 23

Part 2 .. 24

5 Summary .. 24

5.1 Remark ... 24

5.2 Initial situation ... 24

5.3 Implementation .. 24

5.4 Outcome.. 24

6 Informieren – Inform ... 25

6.1 Dicom ... Error! Bookmark not defined.

 General .. 25

 Networking ... 25

6.2 WRAPPING ... 26

 General .. 26

7 Planen – Plan ... 28

7.1 Functional Requirements ... 28

 Requests .. 28

 Wrapping .. 28

 Modified methods ... 28

7.2 Non-Functional Requirements ... 28

 Exception handling ... 28

 Clean Code .. 28

7.3 Test Concept ... 28

 Test Objectives .. 28

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 5 of 114

 Test Strategy and Test Level .. 30

 Test Environment ... 30

 What won’t be tested .. 30

 Test Objects ... 30

 Test Types ... 31

 Overview of test cases ... 31

 Test Case Descriptions .. 32

8 Entscheiden – Decide ... 39

8.1 How many energy drinks should I drink per day? .. 39

8.2 How should the existing services be modified? ... 39

 If there were no Dicom Client Context .. 39

 Adjustments using the Dicom client context.. 43

 The thing you might have noticed ... 44

 The other problem, which the context could solve 45

 The question of the state .. 47

 Which Parameters does the context need .. 49

9 Realisieren – Implement ... 50

9.1 Preface .. 50

9.2 DicomClientContext.DicomContext .. 50

 CreateClient method .. 51

9.3 DicomGenerator.PACSTarget ... 52

 Constructor... 52

9.4 DicomGenerator.PACSTargetTest .. 53

 SaveTest .. 53

 SaveDatasetsIsNullTest ... 54

 SaveDatasetsCountEqualsRequestCountTest ... 54

9.5 DicomToPacsLoader.DicomToPacsLoader ... 55

9.6 DicomTopacsloader.Topacsloadertest .. 55

9.7 ReportSender.pacstarget .. 56

9.8 ReportsSender.Test .. 56

 Constructor and dispose... 56

9.9 IDicomClient .. 57

9.10 PlayGround.Dicomfacade .. 58

9.11 Playground.Playgroundclient ... 60

9.12 Playground.Program ... 60

10 Kontrollieren – Control .. 62

10.1 Planned tests .. 62

11 Auswerten – Evaluate ... 63

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 6 of 114

11.1 Dicomgenerator ... 63

11.2 Jobreceiver .. 63

11.3 DicomTopacsloader .. 64

11.4 Reportsender .. 65

11.5 Unit tests ... 65

Appendix ... 66

12 Glossary ... 66

13 Table of Figures .. 67

14 Bibliography .. 68

15 Code ... 69

15.1 Dicomclientcontext.IDicomContext .. 69

15.2 DicomClientcontext.dicomcontext .. 73

15.3 Playground.program .. 80

15.4 playground.playgroundclient .. 82

15.5 playground.playgroundserver .. 83

15.6 Playground.constants .. 86

15.7 Playground.idicomfacade .. 87

15.8 playground.dicomfacade ... 88

15.9 Dicomgenerator.pacstarget ... 91

15.10 Dicomgenerator.pacstargettest .. 93

15.11 dicomtopacsloader.dicomtopacsloader .. 95

15.12 dicomtopacsloader.topacsloadertest .. 100

15.13 jobreceiver.pacstarget .. 103

15.14 Jobreceiver.pacstargettest ... 106

15.15 reportsender.pacstarget ... 108

15.16 Reportsender.reportsendertest .. 111

16 Git versioning .. 113

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 7 of 114

PART 1
1 PREFACE

This IPA documentation was written by Gabriel Schafflützel. The IPA was initiated on the 6th
of April and completed on the 20th of April. Some preliminary work such as this preface and
the document structure preparation was done as early as the 31st of March. The whole IPA
was done in home office, due to covid measures.

The first part of this documentation covers the tools I will use to complete all the tasks of the
IPA and the prior knowledge I possess relevant to the IPA. I will also keep a daily journal in
which I document my progress, the problems that arise and the solutions I will hopefully find
to those problems. The focus of the first part is the workflow.

In the second part of this documentation, I will show in depth how the Dicom client context
operates, how the implementation of said context works and how the unit tests to test the
methods with the newly implemented context function. The focus of the second part is to
explain the project to the reader.

The implementation of the IPA will be organized using the IPERKA method. Each letter in
the word IPERKA stand for a specific step in the process:

Letter German Word English translation

I Informieren Inform

P Planen Plan

E Entscheiden Decide

R Realisieren Implement

K Kontrollieren Check

A Auswerten Evaluate

Table 1: IPERKA

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 8 of 114

2 WORK ENVIRONMENT AND PREPARATIONS

2.1 INITIAL SITUATION

The ScanDiags software service provides AI (Artificial Intelligence) for augmented diagnosis
from musculoskeletal MRI (Magnetic Resonance Imaging). The service acts as a Dicom
node (Digital Imaging and Communications in Medicine, a widely used protocol in medicine)
that can be accessed by other Dicom nodes, like a PACS (Picture Archiving and
Communication System, a system in which radiologists manage images). Up until now we
cannot unit test our Dicom node fully since we cannot mock the
[Dicom.Network.Client.DicomClient] class inside a unit test. Using a real Dicom client does
not make sense in a unit test since such a test environment depends on many other
components working together.

Framework used for development:

1. The services that shall be unit tested are implemented as worker processes using the
[Microsoft.NET.Sdk.Worker] Sdk of the .Net Core 3.1 infrastructure in the
programming lanuage C#.

2. The Dicom libraries are available on the NUGET package manager for .NET under
https://www.nuget.org/packages?q=fo-Dicom.

3. The test environment is using the packages [Microsoft.NET.Test.Sdk], [xunit],
[xunit.runner.visualstudio] and [Moq], all available on the NUGET package manager.
The aim of the IPA is to implement a Dicom client context class to make unit testing
possible. In addition, unit tests are to be created that use the Dicom client context
class.

2.2 DETAILED WORK INSTRUCTIONS

1. Implement a new .Net Core 3.1 library named [Balzano.Common.DicomContext] using
the SDK [Microsoft.NET.Sdk]. This library shall contain the following class and
interface:

1.1. [Common.IDicomContext] The interface of the [DicomContext] class exposes
1.1.1. a wrapper method to each public method of the [Dicom.Network.Client.DicomClient]

class.
1.1.2. a wrapper event to each public event of the [Dicom.Network.Client.DicomClient] class.
1.1.3. a wrapper property to each public property of the [Dicom.Network.Client.DicomClient]

class.
1.2. [Common.DicomContext] The implementation of the [IDicomContext] interface:
1.2.1. It must contain a reference to a [Dicom.Network.Client.DicomClient] class. This

reference must be initialized in the constructor of the [DicomContext].
1.2.2. All public methods of the [Dicom.Network.Client.DicomClient] class shall be

implemented as wrapper to the [DicomClient] reference.
1.2.3. If necessary, private helper methods shall be implemented to expose the wrapped

[DicomClient] methods.
2. Implement a new .Net Core 3.1 library named [Balzano.Common.DicomContext.Test]

using the [Microsoft.NET.Sdk] SDK, the [Microsoft.NET.Test.Sdk], [xunit],
[xunit.runner.visualstudio] and [Moq] packages, as well as the
[Balzano.Common.DicomContext] library. This library serves as the unit test solution
for the [Balzano.Common.DicomContext] library and shall test each method of the
[Common.IDicomContext] interface.

2.1. Test each wrapped method of the [Dicom.Network.Client.DicomClient] class with:
2.1.1. a positive test with straight method parameters.
2.1.2. a negative test with [null] value method parameters.
2.1.3. parameter edge cases if possible.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 9 of 114

3. Modify the service classes in a separate git branch, to use the implementation:
- DicomGenerator.PacsTarget
- DicomToPACSLoader.DicomToPACSLoader
- JobReceiver.PacsTarget
- ReportSender.PacsTarget

3.1. Change the implementation of relevant methods to use the interface as a parameter.
3.2. Describe the reason why this is good practice.
3.3. Write the unit tests for the modified methods.
4. Documentation
4.1. Document the [Balzano.Common.DicomContext] library in the code.
4.2. Document the [Balzano.Common.DicomContext.Test] test library in the code.
4.3. Document the solution as part of the IPA.
5. Code Style
5.1. Code must be formatted according to the file [210301_DotNet_Code_Style_Rules.md].
6. Definition of done
6.1. All methods are fully implemented.
6.2. The code fulfills the code quality guidelines described in 5.
6.3. The code is well documented. The rules are part of the guidelines described in 5.
7. Testing
7.1. Tests are already part of the tasks, see 2. and 3.3.
7.2. Tests must be reliable and reproducible.
7.3. Tests must be described, including the expected results.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 10 of 114

2.3 PROJECT ORGANIZATION

Company:

Balzano Informatik AG
Zwicky-Platz 4, 8304 Wallisellen
info@balzano.net

Place of execution:

Home office

Candidate:

Gabriel Schafflützel
Walderstrasse 42, 8630 Rüti
076 813 29 98

Vocational trainer:

Rolf Ryser
rolf.ryser@wiss.ch
058 404 42 69

Responsible specialist:

Enes Mujak
enesm@balzano.net
0795458747

Main expert:

Melanie Meneghini
melipfister72@gmail.com
0764355635

Secondary expert:

Johannes Biederstädt
jonnybie@gmail.com
0041 76 419 40 42

mailto:info@balzano.net
mailto:rolf.ryser@wiss.ch
mailto:enesm@balzano.net
mailto:melipfister72@gmail.com
tel:0764355635
mailto:jonnybie@gmail.com

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 11 of 114

2.4 MEANS AND METHODS

The following instruments are used for development work: Visual Studio Code and GIT.

2.5 PRIOR KNOWLEDGE

The candidate has used all relevant technologies and instruments in other projects.

2.6 PRELIMINARY WORK

No preparation work is necessary.

2.7 NEW LEARNING CONTENT

There is no entirely new learning content.

2.8 WORK IN THE LAST 6 MONTHS

The candidate worked on User Stories with .Net Core 3.1.

2.9 ORGANIZATION OF THE WORK RESULTS

The IPA documentation as well as the actual implementation is stored on a Git repository
provided by the company’s Microsoft Azure account. This enables examining the progress
by looking at the different versions of the IPA. A push will be done at least once every day
during the IPA.

The company has multiple such Git repositories. The one the IPA gets implemented in is the
services repository, which is used to store the code of every service relevant to the
company. The IPA and its documentation are on the 11989 Git-branch.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 12 of 114

3 TIMETABLE

1h

1h

1h

1h

1h

1h

1h

1h

1h

1h

1h

1h 1h

1h

1h

1h

1h

1h

Legend

Planned Time

Actual Time

Milestone

Possibility for overtime

I

P

E

R

Decide what solution to use

Get project overview

Read individual evaluation criteria

K
Test cases

Modify service classes to use context

Write project specifications

Formulize tasks

Testing

Write unit tests for modified methods

Tasks

Write conclusion of the project

12.04

WED

7.04

THU

8.04

Implement a Dicom Client Context Class for Unit Testing (IPA - Gabriel Schafflützel)

Time Table

WED

21.0413.04 14.04 15.04 16.04 19.04 20.04

TUE WED THU MONFRI TUEMON

Sch
o

o
l

Sch
o

o
l

Documentation

Create timetable

Write test concept

9.04

FRI

A

Set up environment

Implement the context interface

Implement the client context

Implement unit tests for the context

General cleanup

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 13 of 114

4 DAILY WORK JOURNAL

4.1 7TH OF APRIL 2021

4.1.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

In the daily meeting I asked what steps usually must be done on the first day of the IPA.
Enes, the responsible specialist, responded to this saying that it makes sense to do the
planning phase on the first day and added that it should not take longer than the time it takes
until the first meeting with the experts takes place.

4.1.2 COMPLETED WORK

I was able to get an overview of the whole project, read the individual evaluation criteria,
created a timetable, formulized all tasks on dev.azure.com and wrote down the project
specifications as well as the test concept. I also informed myself more about the wrapping
pattern. I did this mainly by watching the following YouTube video about the topic:
https://www.youtube.com/watch?v=9ZFN8DrvcYA

4.1.3 ACHIEVEMENTS

I now have all the above-mentioned work done and a better understanding of how the
wrapping/adapter pattern functions.

4.1.4 PROBLEMS

I badly underestimated the time it took to create the test concept, so I worked overtime. The
reason it took so long is because of the amount of test possibilities I had to come up with,
not only to satisfy the expectations documented in the task description but also because this
whole IPA has a big focus on unit testing. I came up with over a dozen tests I’ll implement
later and thinking of a single one and writing it down took at least ten minutes. Besides that, I
was unsure of what I was supposed to write in the Test steps fields in the test concept. I
ended up leaving them empty.

4.1.5 ASSISTANCE

I asked my co-worker Andreas two questions:

The first was about what was meant with the word reference in the point 1.2.1 in the detailed
work instructions. I knew what the word itself meant but not in a technical sense in that
context. Andreas explained to me, that this meant a reference to an instance of a class,
which makes sense to me.

The second question was about the wrapper pattern. Andreas wrote his own wrapper class a
few months prior but for an SQL client. As I analyzed his code, I wondered why he gave all
information necessary to the client context over parameters and had so few public methods
in the context itself, instead of using setters or more methods. His response was that
wrapper classes should be stateless if possible and therefore all information should be
provided through parameters. I informed myself further about stateless classes on the
internet after he mentioned that and will describe my findings later in the IPA documentation.

4.1.6 CONCLUSION

Overall, it was a productive day, and I am satisfied with the fact that I was able to do all
planning steps on the first day, even though I assume that I will still have to change a few
things in the test concept.

https://www.youtube.com/watch?v=9ZFN8DrvcYA

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 14 of 114

4.2 8TH OF APRIL 2021

4.2.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

During the meeting Enes told it would make sense to adjust the timetable in a way, that I
plan more time in the evenings to document. Besides that, we talked about how to document
unit tests in the test concept. I told them I was unsure on what I should write in the test steps
field for unit tests and Enes and Andreas agreed that it would be best for me to write a short
explanation in that field on why there aren’t any test steps involved.

4.2.2 COMPLETED WORK

I adjusted the timetable according to the suggestions of Enes yet reserved even more time in
the evenings for documenting than he recommended. I informed myself more about the
wrapping pattern. I also created the interface IDicomContext and wrote the constructor for
the DicomContext. As I implemented these things, I found myself asking various questions
and noting them down. For example, what is the benefit of multiple constructors vs. having
optional parameters in one constructor? I informed myself on the internet and will write about
my findings later in the IPA. Something else I wondered was, whether a function called
SendRequestsAsyncWithCustomClientConfig would make any sense. I dismissed the idea
though. If I find time, I will write about why this doesn’t make sense to me later on in the IPA
as well. I also wrote about Dicom, mocking and dependency injection in the IPA-
documentation.

4.2.3 ACHIEVEMENTS

I now have a more accurate and better timetable, more knowledge about the wrapping
pattern, the IDicomContext interface, an experimental constructor for the DicomContext,
more questions I will try to answer myself and more information about Dicom, mocking and
dependency injection in the IPA-documentation.

4.2.4 PROBLEMS

I was unsure what the Dicom association release was. I eventually found out by reading the
code comments in the DicomClient code on FO-Dicoms GitHub page.

4.2.5 ASSISTANCE

I asked Enes how much information about Dicom I should write into the IPA documentation.
He responded that I should write a short introduction with all relevant information and that if I
use descriptions from the internal Wiki, I should reference it.

4.2.6 CONCLUSION

I’m satisfied with the code I wrote today and think it’s a good start. I was a bit slow with

documenting though because I genuinely didn’t know how I’m supposed to write things.

Maybe things should be super easy to understand and I should make small steps in

explaining. Perhaps I should write about things in depth and assume everyone knows what

I’m talking about. Hopefully I will find a good balance in my writing style tomorrow or else I

will consult Enes on this issue if it persists.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 15 of 114

4.3 9TH OF APRIL 2021

4.3.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

In the meeting Enes suggested to me, that I could write a reflection of why the test concept
took so long. I adjusted the journal entry of the first day so it is clear what exactly the reason
was the test concept took so long. I also told Enes about my realization, that the original
reason for the implementation of the Dicom client was faulty. We discussed the problem and
if it makes sense to change to a different, more simple solution. I gave a few arguments on
why it still makes sense to go for the more complex solution, that being implementing the
Dicom client context and we decided to proceed with the original plan due to my newly found
reasons, even though the original argument, the notion that it wouldn’t be unit testable
otherwise, was simply wrong. I will describe this in further detail later in the IPA. We also
talked about my writing style. I mentioned that I was unsure how simple it should be to
understand but we agreed it’s better to keep it easily understandable.

4.3.2 COMPLETED WORK

I implemented a first version of the DicomContext and created a testing environment that
includes a simple Dicom server and a class implementing the DicomContext, enabling me to
try out the DicomContext without having to start a real service.

I also did a lot more research about wrapper patterns. This took way longer than expected,
because the whole purpose of the DicomContext had changed and therefore I had to find
information aiding me in deciding any future steps. All of this obviously also hindered the
actual implementation of the DicomContext, prompting me to require a lot more knowledge
before proceeding.

4.3.3 ACHIEVEMENTS

With the testing environment I now have a great way of testing new versions of the
DicomContext. I also have a way better understanding of wrapping patterns.

4.3.4 PROBLEMS

One obvious problem is the fact, that the next steps in the IPA are a lot fuzzier, now that the
original purpose of the DicomContext has been defeated.

4.3.5 ASSISTANCE

I shared my thoughts about why wrapping all public fields and events would make the
context stateful and not stateless with Andreas. He told me it might be an idea to pretend
they don’t exist, which would make sense, since they are optional for the client to function.

4.3.6 CONCLUSION

Even though the task description has been deemed faulty it’s still very much possible to do

the IPA, especially since mistakes can be more interesting than things that go as intended.

This doesn’t only apply to software engineering.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 16 of 114

4.4 12TH OF APRIL 2021

4.4.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

We talked about whether the implementation should be stateless or stateful and if I should
implement my pattern ideas. We agreed upon sticking with the original plan but documenting
my other ideas for potential future implementation.

We also talked about the namespace. My problem was that I couldn’t make the namespace
of the client context be the same as the actual class name. Well, I could but it would make
the implementation unnecessarily complicated, because I wouldn’t be able to import the
context library anywhere and I’d have to specify the namespace as well as the class
anywhere I use it i.e., DicomContext.DicomContext or else it wouldn’t know which library and
class I’m talking about. We concluded that I should continue implementing it the way I
already did, namely calling the namespace DicomClientContext.

4.4.2 COMPLETED WORK

I wrote the ClientContext. This took up unplanned time because I had to rewrite the context. I
made a stateless version last Friday but since the decision was made, that I should
implement the stateful version instead and because the stateful version differs a lot from the
stateless one I rewrote it. This might still have saved a lot of time in the future though,
because implementing the stateless version in the services would have been a lot riskier and
might have ended up in me having to debug a service for hours to make it work with the
stateless version. The stateful versions interface looks like the original DicomClient, so it’s a
lot safer to implement, since one doesn’t have to adjust the code to match any new interface.

I also wrote all unit tests for the new version of the ClientContext.

4.4.3 ACHIEVEMENTS

I now have a functioning ClientContext inheriting from IDicomClient.

4.4.4 PROBLEMS

I tried writing a unit test that serves as an automated end-to-end test. Sadly, that unit test
fails for unknown reasons, rendering it useless for now.

4.4.5 ASSISTANCE

None.

4.4.6 CONCLUSION

All in all, it was an okay day. I couldn’t document as much as I would have liked to, because

rewriting the DicomContext took a up most time and I generally was tired and inefficient.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 17 of 114

4.5 13TH OF APRIL 2021

4.5.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

Because Enes is sick I only talked with Andreas, a coworker, instead. We looked at the
timetable and I explained why I spent so much time on implementing the context on Monday.
I also told him, that I was practically done with the unit testing of the client context. There
was still a small problem with one unit test, but I was going to try solving it on my own.

4.5.2 COMPLETED WORK

I switched the inheritance of the DicomContext to IDicomContext and implemented the
IDicomContext, because it turns out the interface IDicomClient doesn’t have all the
properties we need. I also finished writing the unit tests for the DicomContext and continued
with the IPA documentation.

4.5.3 ACHIEVEMENTS

I now have all the unit tests for the DicomContext, the IDicomContext interface and more
content in the IPA documentation.

4.5.4 PROBLEMS

None.

4.5.5 ASSISTANCE

None.

4.5.6 CONCLUSION

All in all, it was a good day and I was able to reach the planned milestone.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 18 of 114

4.6 14TH OF APRIL 2021

4.6.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

There was nothing to discuss during the meeting. Andreas, a coworker, simply informed me
that Enes will soon be back from being sick. I hope he’ll be in better health and not
overworking himself.

4.6.2 COMPLETED WORK

I wrote unit tests for the Dicom generator service and started writing unit tests for
DicomToPACSLoader.

4.6.3 ACHIEVEMENTS

I now have all unit tests required for the Dicom generator service.

4.6.4 PROBLEMS

I first was unsure how to disable the validation of the DicomFiles during runtime because I
was feeding the DicomGenerators Save method with empty DicomDatasets and it would

throw an exception on the line, where I added the datasets to the requests list. The
workaround was to leave away the conversion from DicomDataset to DicomFile. Hopefully,
this didn’t ruin the service. I will have to test that later.

There were tons of problems as I started unit testing the Load method, that aren’t worth

mentioning but took up a lot of time.

4.6.5 ASSISTANCE

None.

4.6.6 CONCLUSION

I am unsatisfied with today’s work, because I couldn’t do any documenting and because unit

testing the Load method is taking forever. I love trying to figure out ways to unit test it, but

ultimately, I’m just too greedy and should maybe just leave the method alone due to its

complexity and because someone should instead refactor it at some point it’s useless to unit

test it now. Even though I slept enough I also was very tired in general today making me a

lot less efficient.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 19 of 114

4.7 15TH OF APRIL 2021

4.7.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

During the meeting I explained why writing the unit tests took so long. The reason being the
complex Load method. We agreed upon me skipping the unit tests for this method and

refactoring the method after the IPA. I also asked how I should obtain example Dicom
datasets in my unit tests. Enes recommended me generating some and storing them in the
project as files. He also thought it’d make sense for me to concentrate on documenting
today, since I didn’t get to that yesterday and I agree with him on that.

4.7.2 COMPLETED WORK

I was able to complete six more pages for the IPA documentation. I mostly documented the
code I wrote up until then.

4.7.3 ACHIEVEMENTS

I now have more content in the IPA documentation.

4.7.4 PROBLEMS

None.

4.7.5 ASSISTANCE

None.

4.7.6 CONCLUSION

Six pages are underwhelming in my opinion. The reason I only was able to do six pages is

because documenting code snippets is a somewhat mundane task and therefore progress

was slow and I was unsure with which tool and diagram type I wanted to do the flowchart for

the LoadTest method. Ironically, this is the unit test that took me forever to try finish in the

first place, once again taking up my time and energy.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 20 of 114

4.8 16TH OF APRIL 2021

4.8.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

On one hand there was the usual meeting with the responsible specialist, of which there is
nothing of interest to report and on the other hand there was a meeting with the main expert.
I gave them a rough overview of my progress so far and the main problems I had on the
way. They also gave me some advice for the IPA documentation and the presentation.
Namely that it might make sense to show the test result in form of a table, so I don’t have to
explain every test again and that I could use a role book during the presentation so I don’t
lose my trail.

4.8.2 COMPLETED WORK

I didn’t do any documentation, because I had some slight health issues due to drinking too
many energy drinks in the last days. I felt more comfortable completing the last unit tests,
finishing the refactoring of the services and doing a general cleanup and decided to do the
documenting during the weekend instead, when I can concentrate better.

I also went on FO-Dicoms Gitter page and asked why certain properties were missing in the
IDicomClient interface. Reinhard Gruber, one of the main contributors to the library,
explained the reasons to me and invited me to do a pull requests with the added properties
and I did just that.

4.8.3 ACHIEVEMENTS

All the code for the IPA is written now, so I can concentrate on the documentation. I also
created the pull request I mentioned above. Technically this isn’t relevant to the IPA,
because the IPA shouldn’t have any dependencies with other people, but I might as well
mention it.

4.8.4 PROBLEMS

I had a namespace problem. Basically the PacsTarget class wasn’t recognized in the
JobReceiver.Test namespace.

4.8.5 ASSISTANCE

I asked my coworker Andreas for a solution to my problem mentioned above and he quickly
realized that I forgot to add the following line to JobReceiver.Test.csproj:

<ProjectReference Include="..\JobReceiver\JobReceiver.csproj" />

All this really does is include the JobReceiver namespace, so I have access to classes such
as the PacsTarget.

4.8.6 CONCLUSION

All in all, it was a successful day but I drew the conclusion that drinking too many energy

drinks for over a week is indeed unhealthy.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 21 of 114

4.9 19TH OF APRIL 2021

4.9.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

We discussed whether or not I have free in the afternoon, because there would be public
holidays due to “Sechseläuten”. The responsible specialist concluded that it wasn’t thought
of during the planning and we should stick to the plan and I agree with that. There was
nothing further to discuss.

4.9.2 COMPLETED WORK

I documented the code of the Playground and checked if all unit tests and services still ran

and wrote down the results.

4.9.3 ACHIEVEMENTS

I now have more content in the IPA documentation and have all the test results.

4.9.4 PROBLEMS

One major problem is the fact, that the ReportSender service showed some very odd
behavior and I don’t know what causes the issue.

4.9.5 ASSISTANCE

None.

4.9.6 CONCLUSION

All in all, it was a productive day and I am mostly content with the results of the tests.

Documenting the test cases took a bit longer than anticipated in the timetable, especially

because the ReportSender service didn’t exactly work though.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 22 of 114

4.10 20TH OF APRIL 2021

4.10.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

In the daily meeting Andreas volunteered to proofread my IPA documentation. Besides that
nothing important was discussed.

4.10.2 COMPLETED WORK

I did all the inline documentation of the code, wrote the summary of the project, finished the
cleanup process, did some grammar corrections according to Andreas’s suggestions and
copied the code into the IPA documentation.

Writing the conclusion of the project didn’t take as long as anticipated, because it only had to
be one page long.

4.10.3 ACHIEVEMENTS

I now have cleaner code, inline documentation and better grammar in my documentation.

4.10.4 PROBLEMS

None.

4.10.5 ASSISTANCE

Andreas proofread my IPA documentation.

4.10.6 CONCLUSION

I was generally content with my IPA and looked forward to finalizing it on the next day.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 23 of 114

4.11 21TH OF APRIL 2021

4.11.1 DAILY MEETING WITH RESPONSIBLE SPECIALIST

There wasn’t anything interesting to discuss. I simply mentioned that I will have a job
interview starting at 10.30 am.

4.11.2 COMPLETED WORK

I finalized the IPA-documentation and checked all the evaluation criteria again.

4.11.3 ACHIEVEMENTS

I now have finished the IPA-documentation.

4.11.4 PROBLEMS

None.

4.11.5 ASSISTANCE

None.

4.11.6 CONCLUSION

I really didn’t have to do much anymore on the last day so I decided to upload the IPA-

documentation a few hours earlier than necessary.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 24 of 114

PART 2
5 SUMMARY

5.1 REMARK

I recommend skipping the summary if you haven’t read the rest yet, because I am using a lot
of technical terms that get explained later in the IPA. If I’d explain them here it wouldn’t be a
summary anymore.

5.2 INITIAL SITUATION

At the beginning of the IPA there were four different services that used a Dicom client
provided by a library called FO-Dicom. The methods in which the Dicom client got used,
simply weren’t unit testable, because one would have to set up a real connection to a real
Dicom server. You want to test the methods themselves and not the connection to servers
when you write unit tests.

Another problem is the fact, that the implementations of the Dicom client were done
differently in every service, although the end goals were almost identical. This however isn’t
the main focus of the IPA, but an interesting side quest.

5.3 IMPLEMENTATION

By writing a wrapper class called DicomContext containing the Dicom client and an interface
for that wrapper class and by doing dependency injection to every class that uses the new
Dicom client wrapper you can enable unit testing by mocking the DicomContext’s interface
so the connection can be faked.

And by simplifying that same DicomContext using the facade pattern and making the context
stateless you can unify the usages of the DicomContext to enhance maintainability and
testability.

5.4 OUTCOME

Because FO-Dicom already provided an interface for the Dicom client, the client technically

already was mockable. Some properties of the Dicom client are still missing in their

interface, so it turns out it was still necessary to create a wrapper class to enable mocking.

After discussing it with FO-Dicoms main developer I created a pull request enhancing their

interface with the missing properties. After that pull request has been done, the original

purpose of the Dicom context will indeed be defeated but having a wrapper class still brings

some advantages and is a good steppingstone for adding a version with the facade pattern.

At the end of the IPA the DicomContext was written resembling the proxy pattern, every

class using the new DicomContext had dependency injection and their methods had unit

tests in which the DicomContext was mocked using the IDicomContext interface. I also

created a prototype in which the facade pattern was used for the DicomContext instead. This

might get used in the future.

I am satisfied with the outcome and was able to learn a lot during the process, but it is

important to keep in mind, that the future of the DicomContext is uncertain.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 25 of 114

6 INFORMIEREN – INFORM

6.1 DICOM

6.1.1 GENERAL

Dicom is a medical imaging software integration standard and can either be encountered in
the form of a file format with the ending ".dcm" or used as a network protocol. Both options
are based on so called Dicom datasets, which are collections of information about the
patient, the equipment used and much more. Medical imaging equipment in hospitals
generate Dicom files and for sharing the Dicom datasets contained in those files it uses the
Dicom network protocol. (Schafflützel, 2021)

6.1.2 NETWORKING

Only the networking part is relevant to the IPA. Therefore, this is the only topic I give a small
overview of.

SCU (Service Class User): Client
SCP (Service Class Provider): Server

(Schafflützel, 2021)

As you can see in the diagram sending a request to a SCP (“server”) requires two prior

steps.

In the first step, the association request, the SCU (“client”) asks what kind of requests the

SCP allows, meaning what kind of commands and in which format they can be. In Dicom

language the command type is called SOP which stands for Service Object Pair and the

format options is called the presentation context.

Now like in dating the SCP can either respond by rejecting or accepting any further

advances, the difference to dating being an SCP will never ghost you completely. This is the

second step.

In C# you can use the FO-Dicom library to initialize a Dicom client. The required parameters

for doing this are the following.

SCU SCP

SCU SCP

Association Request

Association
Response

Request

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 26 of 114

Paramter name Type Description

host string This is the Dicom host you

want to send the data to.

This can be an IP or a

hostname like “localhost”.

port int This is the port of the host

you want to send your

request to.

useTls bool This is whether you want

TLS security to be enabled.

What this entails isn’t

relevant to the IPA.

callingAe string This is the so-called calling

application title. It’s basically

how your SCU is named in

the Dicom world.

calledAe string This is the name of the SCP.

6.2 WRAPPING

6.2.1 GENERAL

What I learned from researching this topic is that one does not simply wrap something.
There are a lot of different ways to go about it and various similar patterns with completely
different intentions you can implement. Therefore, it’s important to know exactly what you
want to achieve before you start wrapping.

The following are patterns that have similar purposes and might be confused with each
other.

Pattern name Short description

Adapter pattern An intermediate interface to make two incompatible interfaces
work with each other.

Facade pattern A simplified interface hiding a complex collection of objects
working together.

Proxy pattern Controls access to an interface so you have a placeholder for
an object and can initialize the object itself later.

Decorator pattern An object is placed inside of a wrapper object, that calls the
original objects methods but adds some new logic around it.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 27 of 114

(Inherits from)

All the above patterns are part of a bigger group called structural patterns. There are two
more groups of patterns called the creational and behavioral patterns, but I won’t go into
further detail about those. I’m unable to say which of the mentioned structural patterns are
true wrapper patterns because different sources on the internet claim different things. I
assume wrapping just universally means placing an object inside of a wrapper object. The
adapter pattern seems to be the most straight forward example of this concept.

6.2.1.1 ADAPTER PATTERN

The basic premise of the adapter pattern is to create an interface of an adapter that allows
an interface to call an otherwise incompatible interface by acting as an intermediary. The
goal is not however to change any behavior during this process. The most obvious example
is a literal power adapter. It allows you to travel to another country where the power sockets
have a completely different interface than what you need for your phone charger but still be
able to charge it. On one hand you have the interface of which the power originates, i.e., the
power socket and on the other hand you have the interface of the adapter it connects to, that
allows you to connect your phone charger.

Here’s how this concept would translate to a simple UML.

Client

Figure 1: Adapter example

(Wikipedia, 2021)

The client in the diagram wants to call the adaptees method
RequestButIncompatible() but for some compatibility reasons can’t. The solution here

is to create an interface on top of the adapter. The Client now can call the adapters
Request() method without having to bother about compatibility, because the adapter

already does that.

The reasons for using the adapter pattern go as follows.

• It allows reusing a class that doesn’t have the interface a client requires.

• It allows two classes with incompatible interfaces to work together.

• It can provide an alternative interface for a class.

(Wikipedia, 2021)

ITarget

Request()

Adaptee

RequestButIncompatible()

Adapter

Request()

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 28 of 114

7 PLANEN – PLAN

7.1 FUNCTIONAL REQUIREMENTS

7.1.1 REQUESTS

Sending requests with the Dicom client context to a Dicom server should give the correct
response.

7.1.2 WRAPPING

All 5 public methods, 5 events and 18 properties of the Dicom client are wrapped in the
Dicom client context.

7.1.3 MODIFIED METHODS

The newly modified methods in the services should still run.

7.2 NON-FUNCTIONAL REQUIREMENTS

7.2.1 EXCEPTION HANDLING

Every function with a potential of failing should be surrounded by a try catch clause. This

enables developers and users to identify problems easier and make them less severe,
because like this the rest of the program will still be able to run without crashing.

7.2.2 CLEAN CODE

The code should be clean and easy to understand for other developers. The guidelines to be
followed are documented in the file 210301_DotNet_Code_Style_Rules.md which is in

PkOrg.

7.3 TEST CONCEPT

7.3.1 TEST OBJECTIVES

No. Description Comparable Result Priority
1 is highest,
3 is lowest

1 Test if successful association can
be done with the wrapped
SendAsync method.

DicomClient.Associatio

nAccepted

1

2 Test if an association can be done
with the wrapped
AddRequestsAsync method using

DicomClient.Associatio

nRejected AND
1

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 29 of 114

No. Description Comparable Result Priority
1 is highest,
3 is lowest

a falsely or partially falsely
initialized Dicom client context.

DicomClient.RequestTim

edOut

3 Test if all public properties in the
Dicom client context can be set
correctly.

All public properties in the
Dicom client context.

1

4 Test if wrapped events function. All public events in the Dicom
client context.

1

5 Test the provided requests validity
of the modified Save method in the

PACSTarget.

The callback of the client
context mock containing the
requests, which were provided
to the mock object over its
parameters.

2

6 Test the Load method in
DicomToPacsLoader by mocking

both the SQL data context and
Dicom client context and controlling
the data
sqlDataContext.ExecuteRead

erAsync returns to test the

parameters provided to
SendCStoreRequest.

The callback of the client
context mock containing the
request, which was provided
to the mock object over its
parameters.

2

7 Test the Load method of test nr. 5
using the same technique as
described in test nr. 5 but with the
goal to test the value of the SQL
parameter called
SPParameterExportID .

The callback of the sql data
context mock containing the
SPParameterExportID

SQL parameter which was
provided to the mock object
over its parameters.

3

8 Test the Dicom requests validity in
JobReceiver.PacsTarget.sen

dReports.

The callback of the client
context mock containing the
requests, which were provided
to the mock object over its
parameters.

2

9 Test the Dicom requests validity in
ReportSender.PacsTarget.se

ndReports.

The callback of the client
context mock containing the
requests, which were provided
to the mock object over its
parameters.

2

Table 2: Test descriptions

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 30 of 114

7.3.2 TEST STRATEGY AND TEST LEVEL

I must test the Dicom client context itself. Because it is a client it does not have much logic
and return values to test. Therefore, I will do automated integration tests to check if the
context uses the wrapped methods correctly and at least one unit test to make sure the class
variables are set correctly when initializing a client context.

I also must test the modified methods in the services. I intend to write a unit test for each
occurrence of the client context. Because none of those methods have testable return
values, I will instead test the parameters provided to the context by mocking the context and
comparing a callback of the parameters with the expected results.

7.3.3 TEST ENVIRONMENT

The test environment for testing the Dicom client context itself is a .Net Core 3.1 library
named Balzano.Common.DicomContext.Test using the Microsoft.NET.Sdk SDK,

the Microsoft.NET.Test.Sdk, xunit, xunit.runner.visualstudio and Moq

packages, as well as the Balzano.Common.DicomContext library. To enable automated

integration tests there is a rudimentary Dicom server in the project.

The tests for the modified methods in the services will be implemented in the services own
test folders. The namespace of those test folders is the combination of the capitalized
service name with the suffix .Test. The Microsoft.NET.Sdk SDK, the

Microsoft.NET.Test.Sdk, xunit, xunit.runner.visualstudio and Moq

packages are used in those as well.

No internet connection is needed and you need at least 1 GB of RAM to run VS Code and
the tests. (Microsoft, 2021)

7.3.4 WHAT WON’T BE TESTED

• I won’t be writing unit tests that test the actual connection to a real Dicom server for
the services, because I want to test the logic of the methods using the DicomContext.

• I won’t test any other methods of the services besides the ones using the
DicomContext, because during the IPA my only responsibility is that the
DicomContext works where it is being used.

7.3.5 TEST OBJECTS

No. Item Description

1 Common.DicomContext Enables unit testing of classes
using it due to its interface being
mockable.

2 DicomGenerator.PacsTarget Sends the generated
DicomDatasets to a DicomNode.

3 DicomToPACSLoader.DicomToPACSLoader Uses a given list of
StudyInstanceUIDs to load
SOPInstances from the database

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 31 of 114

No. Item Description

and write them as Dicom files to
the filesystem.

4 JobReceiver.PacsTarget Sends encapsulated PDF reports
to the PACS.

5 ReportSender.PacsTarget Sends encapsulated PDF reports
to the PACS.

Table 3: Test objects

7.3.6 TEST TYPES

No. Test type Description

1 Positive Test The provided parameters are in an expected and correct manner.

2 Negative
Test

The provided parameters expected are null values.

3 Parameter
Edge Cases

The provided parameters are either the highest or lowest
possible values.

4 Unit Test A unit i.e., a class is being tested.

5 Integration
Test

An end-to-end test where not a single unit but an outcome is
being tested.

7.3.7 OVERVIEW OF TEST CASES

No. Test object Test case

1 Common.DicomContext.SendRequestsAsync A single request

2 Common.DicomContext.SendRequestsAsync Invalid parameters

3 Common.DicomContext.SendRequestsAsync Max. number of requests

4 Common.DicomContext.SendRequestsAsync Too many requests

5 Common.DicomContext.SendRequestsAsync Parameters null or “”

6 DicomGenerator.PacsTarget Datasets = null

7 DicomGenerator.PacsTarget requests amount ==
datasets amount

8 DicomToPACSLoader.DicomToPACSLoader SQL reader gives correct
dataset

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 32 of 114

No. Test object Test case

9 DicomToPACSLoader.DicomToPACSLoader SQL reader gives null
values

10 Jobreceiver.PacsTarget reports = null

11 Jobreceiver.PacsTarget requests amount == reports
amount

12 ReportSender.PacsTarget reports = null

13 ReportSender.PacsTarget requests amount == reports
amount

14 DicomGenerator.PacsTarget Run DicomGenerator

15 DicomToPACSLoader.DicomToPACSLoader Run DicomToPACSLoader

16 Jobreceiver.PacsTarget Run JobReceiver

17 ReportSender.PacsTarget Run ReportSender

Table 4: Test cases overview

7.3.8 TEST CASE DESCRIPTIONS

Test Case No. 1 A single request

Description Provide the SendAsync method with a single request as a parameter.

Test
prerequisites

• Have an instance of the Dicom client context.

• Have any kind of request e.g., a CEchoRequest.

• Have all other required parameters for SendRequestsAsync.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

The Dicom server should answer with a successful response.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 33 of 114

Test Case No. 2 Invalid parameters

Description Provide the SendAsync method with invalid parameters.

Test
prerequisites

• Have an instance of the Dicom client context.

• Have any kind of request e.g., a CEchoRequest.

• Have all other required parameters for SendRequestsAsync.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

SendRequestsAsync should throw an error describing the problem for
as many mistakes as possible.

Test Case No. 3 Max. number of requests

Description Provide the SendAsync method with the maximum allowed number of
requests that SendAsync should still be able to process as a
parameter.

Test
prerequisites

• Have an instance of the Dicom client context.

• Have the maximum possible number of requests that
SendRequestsAsync should still be able to process of any
kind of request e.g., a CEchoRequest in a list.

• Have all other required parameters for SendRequestsAsync.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

The Dicom server should answer with a successful response.

Test Case No. 4 Too many requests

Description Provide the SendAsync method with more requests than it should be
able to handle as a parameter.

Test
prerequisites

• Have an instance of the Dicom client context.

• Have a totally exaggerated amount of any kind of request e.g.,
a CEchoRequest in a list.

• Have all other required parameters for SendRequestsAsync.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

SendRequestsAsync should throw an error describing the problem.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 34 of 114

Test Case No. 5 Parameters null or “”

Description Provide the SendRequestsAsync method with all correct parameters
yet make one of them the value null or “”. Do this with every possible
parameter once.

Test
prerequisites

• Have an instance of the Dicom client context.

• Have all other required parameters for SendRequestsAsync.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

SendRequestsAsync should throw an error describing the problem or
the Dicom server should answer with a successful response,
depending on the importance of the parameter.

Test Case No. 6 Datasets = null

Description Provide the Save method with the value null in the datasets
parameter.

Test
prerequisites

• Have a mock of the Dicom client context.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

SendRequestsAsync should throw an error describing the problem.

Test Case No. 7 requests amount == datasets amount

Description Provide the Save method with a certain number of datasets. Check if
the same amount of DicomCStoreRequests are given to the
SendRequestsAsync method.

Test
prerequisites

• Have a mock object of the Dicom client context.

• Have multiple generated datasets.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

The amount of requests should be equal to the number of datasets.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 35 of 114

Test Case No. 8 SQL reader gives correct dataset

Description Mock the SQL data context and make the SQL reader return an id
and a studyInstanceUID. Check if the SendRequestsAsync call in
SendCStoreRequests gets a dataset with the same id and
studyInstanceUID as defined earlier.

Test
prerequisites

• Have a mock object of the Dicom client context.

• Have a mock object of the SQL data context.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

The SendRequestsAsync call in SendCStoreRequests should get a
dataset with the same id and studyInstanceUID as defined in the
return values of the mocked SQL reader.

Test Case No. 9 SQL reader gives null values

Description Mock the SQL data context and make the SQL reader return null as
an id and null as a studyInstanceUID.

Test
prerequisites

• Have a mock object of the Dicom client context.

• Have a mock object of the SQL data context.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

The Load method should throw an error describing the problem.

Test Case No.
10

reports = null

Description Provide the SendReports method with null as the reports parameter
but give the other parameters valid values.

Test
prerequisites

• Have a mock object of the Dicom client context.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

The SendReports method should throw an error describing the
problem.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 36 of 114

Test Case No.
11

requests amount = reports amount

Description Provide the SendReports method with a certain amount of valid
DicomDatasets as the reports parameter and give the other
parameters valid values as well. Check if the same amount of
DicomCStoreRequests are given to the SendRequestsAsync method.

Test
prerequisites

• Have a mock object of the Dicom client context.

• Have generated DicomDatasets.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

The amount of requests should be equal to the number of datasets.

Test Case No.
12

reports = null

Description Provide the SendReports method with null as the reports parameter
but give the other parameters valid values.

Test
prerequisites

• Have a mock object of the Dicom client context.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

The SendReports method should throw an error describing the
problem.

Test Case No.
13

requests amount = reports amount

Description Provide the SendReports method with a certain amount of valid
DicomDatasets as the reports parameter and give the other
parameters valid values as well. Check if the same amount of
DicomCStoreRequests are given to the SendRequestsAsync method.

Test
prerequisites

• Have a mock object of the Dicom client context.

• Have generated DicomDatasets.

Test steps No manual test steps needed due to it being a unit test. See
implementation.

Expected
outcome

The amount of requests should be equal to the number of datasets.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 37 of 114

Test Case No.
14

Run DicomGenerator

Description Follow the steps to run the DicomGenerator to check if the
modification doesn’t disable the service.

Test
prerequisites

• Have a .NET Core runtime installed.

Test steps • Set the variable Target to Dicom in the Config.json file

located in the Config folder of the DicomGenerator project.

• Make sure the Config.json references your own Dicom

server you want to send the data to.

• Open the project root folder in CMD.

• Type dotnet run and hit enter.

Expected
outcome

The generated Dicom datasets should arrive at the server.

Test Case No.
15

Run DicomToPACSLoader

Description Follow the steps to run the DicomToPACSLoader to check if the
modification doesn’t disable the service.

Test
prerequisites

• Have a .NET Core runtime installed.

• Have the services configuration point to your local Orthanc.

Test steps • Open the project root folder in CMD.

• Type dotnet run and hit enter.

Expected
outcome

The service should run without crashing and the log should show that
a successful connection with the local Orthanc was established.

Test Case No.
16

Run JobReceiver

Description Follow the steps to run the JobReceiver to check if the modification
doesn’t disable the service.

Test
prerequisites

• Have a .NET Core runtime installed.

• Have the services configuration point to your local Orthanc.

Test steps • Open the project root folder in CMD.

• Type dotnet run and hit enter.

Expected
outcome

The service should run without crashing and the log should show that
a successful connection with the local Orthanc was established.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 38 of 114

Test Case No.
17

Run ReportSender

Description Follow the steps to run the ReportSender to check if the modification
doesn’t disable the service.

Test
prerequisites

• Have a .NET Core runtime installed.

• Have the services configuration point to your local Orthanc.

Test steps • Open the project root folder in CMD.

• Type dotnet run and hit enter.

Expected
outcome

The service should run without crashing and the log should show that
a successful connection with the local Orthanc was established.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 39 of 114

8 ENTSCHEIDEN – DECIDE

8.1 HOW MANY ENERGY DRINKS SHOULD I DRINK PER DAY?

Even though I wrote this question as a joke at the start of the IPA I really should have tried to

answer it. Whatever the answer is, it’s less than I drank.

8.2 HOW SHOULD THE EXISTING SERVICES BE MODIFIED?

8.2.1 IF THERE WERE NO DICOM CLIENT CONTEXT

8.2.1.1 PROBLEMS WITH CURRENT IMPLEMENTATION

The main problem the services initializing the DicomClient currently have is, that the
DicomClient gets initialized in Constructors like the PACSTarget class in the
DicomGenerator:

 public PACSTarget () {

 this.callingTitle = Program.config.CallingAET;

 this.calledTitle = Program.config.CalledAET;

 this.dicomHost = Program.config.DicomHost;

 this.dicomPort = Program.config.DicomPort;

 this.client = new DicomClient(

 dicomHost,

 dicomPort,

 false,

 callingTitle,

 calledTitle

);

 }

Or at the start of methods like in the DicomToPACSLoader:

 public async Task Load()

 {

 client = new DicomClient(

 Program.config.PACS_IP,

 Convert.ToInt32(Program.config.PACS_PORT),

 false,

 Program.config.SERVICE_AE,

 Program.config.PACS_AE

);

 client.Logger = LogManager.GetLogger("DicomClient");

 await PingPACS();

In both variants the methods initializing the DicomClient become untestable if there is no real
Dicom server running somewhere which you could reference in the test. In the case of unit
tests this is a major problem since you want to test single methods of a unit (class) and not
the Dicom connection. And even if you would reference a Dicom server eligible for sending
test data to, you’d have to find a way of hijacking the configuration variables for the
DicomClient to direct the connection to said server, which is a difficult task to say the least.
Passing in null values when initializing the DicomClient isn’t an option either, because the

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 40 of 114

program would simply crash or the method would throw an exception preventing you from
testing the rest of the logic in the method you want to test.

8.2.1.2 WHAT WE NEED INSTEAD FOR ENABLING UNIT TESTING

The only way of unit testing such methods without connecting to real Dicom servers is by
doing something called mocking. When you mock an object, you create a fake object that
does nothing if you tell it to do something. By injecting such a dummy object instead of using
a real client object you don’t have to bother preparing a server the client can connect to,
because if you tell the mocked client to send data to a server it’ll just ignore your request and
the program moves on to the next line of code.

It is important to keep in mind that mocking can only be done to interfaces of a class. The
reason for this is because most mocking frameworks use the proxy pattern. (matt, 2020) I
mentioned the proxy pattern in chapter 5.2.1. In the proxy pattern the proxy object inherits
from the other objects interface so you could technically initialize an object later, redirect the
calls to the object or add some own functionality. Basically, a mock is an object inheriting
from the interface you feed it, but the methods in this object don’t do anything, unless you
want the mock to fake some return values for example. Meaning the mock only does the
inheritance and adding own functionality part from my understanding though. The
functionality you can add being fake responses you control. But you obviously need the
interface to create a proxy.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 41 of 114

Here’s a visual representation of how things work without mocking the client.

Figure 2: Unit test without mocking client

In this case you’d litter a server with unnecessary data. You either delete the data you sent
to the server for testing reasons or you don’t test this method, unless you mock the client:

Figure 3: Unit test with mocking client

8.2.1.3 POSSIBILITES TO MAKE THE DICOM CLIENTS IN THE SERVICES
MOCKABLE

You must be able to get that mocked client into the method somehow first though. Here’s
two examples how you should not approach this problem followed by an actual solution.

8.2.1.3.1 BAD IDEA 1

What if we initialized the DicomClient in the constructor but used the interface IDicomClient
as the type of the client class field, since we could use the interface to mock the DicomClient
in a unit test?

Unit Test
Function
to test

Run!

Client

Send data!

Server Sends data

Unit Test
Function
to test

Run!

Mock
Client

Send data!

Server

Sure!
Done!

(Doesn’t send
data)

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 42 of 114

private IDicomClient client;

public PacsTarget() {

 this.client = new DicomClient(

 "someHost",

 0000,

 false,

 "thisService",

 "someServer"

);

}

Code Snippet 1: Bad idea 1

This isn’t an option since the moment we initialize a PacsTarget in a unit test the client field
is a real DicomClient and there’s no possibility to swap the client out with a mock of
IDicomClient, unless the client field was public or had a setter method, which should be
avoided at all costs for security reasons.

8.2.1.3.2 BAD IDEA 2

Another thought experiment would be if there was a separate method in the PacsTarget
class that initializes the DicomClient but it gets called after the PacsTarget gets initialized.

private IDicomClient client;

public void initializeDicomClient() {

 this.client = new DicomClient(

 "someHost",

 0000,

 false,

 "thisService",

 "someServer"

);

}

Code Snippet 2: Bad idea 2

This would mean that if you’d initialize the pacsTarget inside of a unit test there wouldn’t be
a real DicomClient if you don’t call the initializeDicomClient method as well. However there
still would be no way of mocking the client because the class field for the client still is private.
In case of unit testing, where you don’t want to call the initializeDicomClient method,

because you don’t want a real server connection, the client would have the value null and an
exception would be thrown in the method in which you use the client.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 43 of 114

8.2.1.3.3 SOLUTION - DEPENDENCY INJECTION

The only reasonable alternative would be to do dependency injection for either the
constructors or the methods of the classes requiring a DicomClient. For example, by
adjusting the PacsTarget class in the ReportBuilder service to something like this:

private IDicomClient client;

public PacsTarget(IDicomClient client) {

 this.client = client;

}

Code Snippet 3: Dependency injection

It makes the class unit testable by enabling the mocking of the IDicomClient interface and
passing it to the PacsTarget constructor. By doing that you move the problem upward in the
hierarchy of classes. You’ll have to initialize the DicomClient eventually after all meaning
you’d end up having a new untestable method or constructor higher up in the class hierarchy
where it gets initialized.

Here is how you would mock this in a unit test using Moq:

var dicomClientMock = new Mock<IDicomClient>();

var testablePacsTarget = new PacsTarget(dicomClientMock.Object);

Code Snippet 4: Creating and injecting a mock

The Object property of the dicomClientMock is the actual object that will fool the program
into thinking it’s a Dicom client.

Methods you run in the unit tests containing lines such as await client.SendAsync(); are

suddenly a lot less scary now.

The IPA task description says I should inject the Dicom client by adding it as a parameter for
the method where the client gets used, instead of through the constructor like one usually
does with dependency injection. An advantage of doing it through the constructor is, that it
would be available to all methods in the class. I’ll stick to the task description though.

8.2.2 ADJUSTMENTS USING THE DICOM CLIENT CONTEXT

The Dicom client context faces the exact same problems described above, only that instead
of passing in a IDicomClient into the constructors we will pass in the IDicomContext:

private IDicomContext dicomContext;

public PacsTarget(IDicomContext dicomContext) {

 this.dicomContext = dicomContext;

}

Code Snippet 5: Injecting the DicomContext

And instead of mocking the IDicomClient we can now mock the IDicomContext:

var dicomContext = new Mock<IDicomContext>();

var testablePacsTarget = new PacsTarget(dicomContextMock.Object);

Code Snippet 6: Mocking the DicomContext

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 44 of 114

Mockable!

8.2.3 THE THING YOU MIGHT HAVE NOTICED

Let me remind you of the title of this IPA.

Implement a Dicom Client Context Class for Unit Testing

Notice how this might imply we require the Dicom client context class for unit testing?

But I was able to show how it’s completely possible to mock a DicomClient and therefore
enable safe unit testing without the Dicom client context, simply by using the IDicomClient
interface in chapter 7.2.1.3.3, wasn’t I? Doesn’t it render the original purpose of the Dicom
Client Context completely useless?

Correct. And here’s how that came about.

When I came up with the idea for the IPA topic a few months ago I was facing the problem I
described in chapter 7.2.1. I wanted to write unit tests for the methods implementing the
DicomClient and I thought I couldn’t, simply because I was unaware an interface
IDicomClient existed. If this interface didn’t exist, I would have been completely right about
the fact that I was unable to write unit tests. And it would have been true that I would have
needed to implement a wrapper class, to create an interface of the new wrapper class, which
I can then mock.

The reason you need to create a wrapper class to make an interface is because you can’t
just make an interface of a class you get from an external library that doesn’t have one yet,
since the class of which you’d make an interface of wouldn’t inherit it. We can’t add
inheritance to a class we don’t have write access to.

Here’s a visual representation of the wrapper solution if the DicomClient class wouldn’t have
built in inheritance yet.

Service

Figure 4: DicomContext concept

If this diagram feels familiar it’s because you’ve seen something similar in chapter 5.2.2.1.
Just like in the adapter pattern we are wrapping an object inside of an object, that being the
DicomClient inside of the DicomContext. In the DicomContext we then call methods of the
actual DicomClient, but more importantly the purpose for all of this was to finally have an
interface which we can mock and still, albeit indirectly, use the DicomClient in the services.

BUT

Ever since the 10th of April 2019, the day FO-Dicom pushed the first commit of their new
DicomClient including a shiny interface, things would look more like this after I’d implement
the DicomContext:

IDicomContext

DicomClient

DicomContext

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 45 of 114

Mockable...

Service

Figure 5: Client and Context, two interfaces, one problem

Having two mockable interfaces and no discernible difference is just slothful and goes
against the YAGNI (You aren't gonna need it) principle. The original purpose of the
IDicomContext interface is therefore defeated. Or so I thought at first. During the
implementation I noticed, that IDicomClient doesn’t contain definitions for a few properties,
that the actual DicomClient has and that we require in the services. To make a mock that
can fake having those properties, we need to make the IDicomContext containing all the
properties or FO-Dicoms interface gets enhanced.

8.2.4 THE OTHER PROBLEM, WHICH THE CONTEXT COULD SOLVE

See this code snippet?

 public async Task Save(List<DicomDataset> datasets) {

 List<DicomRequest> requests = new List<DicomRequest>();

 foreach(DicomDataset dataset in datasets) {

 requests.AddRange(new List<DicomRequest>

 {

 new DicomCEchoRequest(),

 new DicomCStoreRequest(new DicomFile(dataset))

 });

 }

 await client.AddRequestsAsync(requests);

 await client.SendAsync();

 }

Code Snippet 7: DicomGenerator.PACSTarget.Save()

IDicomClient

IDicomContext

DicomClient

DicomContext

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 46 of 114

And this one?

 public async Task SendReports(List<DicomDataset> reports, string remot

eAE, string remoteHost)

 {

 client = new Dicom.Network.Client.DicomClient(remoteHost, Program.

config.PACS_PORT, false, Program.config.SERVICE_AE, remoteAE);

 client.Logger = LogManager.GetLogger("DicomClient");

 await PingPACS();

 foreach (DicomDataset ds in reports)

 {

 await sendCStoreRequest(ds);

 }

 }

Code Snippet 8: JobReceiver.PacsTarget.SendReports()

Those methods do the exact same, only completely differently, thinking that being unique
makes them quirky. Maybe if PACSTarget and PacsTarget were a bit more alike, managing
the code would be a lot simpler. This goes for all four of the classes I must modify for the
IPA. It’s the same concept with all of them though:

1. We initialize a new DicomClient.
2. We ping a Dicom server using a DicomCEchoRequest.
3. We send more requests.

There’s currently no consistency in how the requests get sent and how often we ping the
Dicom server, even though there’s barely any difference in the end goals.

I’m pretty sure that pinging the server after every single request like in the PACSTarget or
sending every request one by one like in the PacsTarget isn’t optimal. Balzano AG isn’t a
hospital though, so not every developer should have to be required to know the most optimal
solution for sending their Dicom requests and most requests will always stay rather simple.

I think this calls for a simplified interface. This is where the Dicom context could help.

In chapter 5.2.1 I mentioned the facade and decorator patterns. Now I might not be able to
understand those patterns completely in the timespan of this IPA, but as some random
internet stranger once said in a comment section; Patterns are supposed to be descriptive,
not prescriptive. (superpig, 2020) Yes, I was surprised as well when I realized patterns aren’t
those pure magic forces you have to adhere to, that I imagined them to be. Maybe those two
patterns I mentioned earlier might somewhat describe where I could go with the Dicom
context. I want to simplify the interface and maybe add a specific pinging behavior, so most if
not all requests in the services can be greatly shortened and standardized.

I will not actually implement this idea during the IPA however, but will make a prototype and
store it for later use, so the chances of me being able to implement everything in time before
the IPA is over don’t drop. This means I will only do a simple wrapper class containing all
public methods, events and properties instead. This simpler implementation is probably best
described as the proxy pattern. In the proxy pattern you usually inherit from the interface of
the class you want to create a proxy from, meaning the proxy interface looks the same as
the class it wraps. I also will only be able to implement the idea of making the class stateless
in form of a prototype for now. I will go into further detail what this means in the next chapter.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 47 of 114

8.2.5 THE QUESTION OF THE STATE

One of the main questions is whether this new client context should be stateless or stateful.

A stateful class stores information about things that happened in the past and when you call
a method of the stateful class this stored information impacts the result of your method call.
Here’s an example:

public class IAmStateful {

 private int number;

 public IAmStateful(int number) {

 this.number = number;

 }

 public int square() {

 return number *= number;

 }

}

Code Snippet 9: Stateful class

Every time you call the square() method, the number field in the class gets changed and

stored. Depending on how many times you have called the method, your result will be
different. This makes sense in scenarios, where an object should store important information
relevant to itself after it has been initialized.

A stateless class never stores information that happened in the past and when you call a
method of a stateless class using the same parameters you will always get the same result.
(kgiannakakis, 2011) Here’s an example:

public class IAmStateless {

 public int square(int number) {

 return number * number;

 }

}

Code Snippet 10: Stateless class

Every time you call the square() method, the only number that gets used for calculating, is

the number you supply as a parameter. This makes sense in scenarios, where the
information required for executing the method isn’t dependent on past calls of methods or
changes in the class.

The way to find out whether the ClientContext needs to be stateful or stateless is by
analyzing the places the DicomClient gets implemented. Like that we can figure out how
many changes are being done to the client that influence the outcome of its method calls
and if it’s reasonable to supply that information as parameters instead.

Here’s a list of all public methods, public fields and public events of the Dicom client that get
used after the initialization of the DicomClient by the different ScanDiags services:

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 48 of 114

Task AddRequestAsync(DicomRequest dicomRequest);

Task AddRequestsAsync(IEnumerable<DicomRequest> dicomRequests);

Task SendAsync(CancellationToken cancellationToken = default, DicomClientCance

llationMode cancellationMode = DicomClientCancellationMode.ImmediatelyReleaseA

ssociation);

Logger Logger { get; set; }

Code Snippet 11: Used methods, fields and events from IDicomClient

Usually, the methods adding requests to the client get called right before calling the method
to send the data to the server and the logger can easily be provided as a parameter. Now if
a lot more fields and events of the client would have been used and changed by the services
after the initialization of the client, making the Dicom client context stateless would have
been problematic, since you’d have to add all the information, that slightly changes the
behavior of the called method, over parameters for the methods. But because most
necessary information gets provided over the constructor when the client gets initialized for
the first time and all that information doesn’t change, making it stateless makes sense.

However, if it were a reoccurring theme, that a lot of important information of the client gets
changed between two method calls that influences the outcome, it’d wouldn’t be a good idea
to make it stateless. Here’s an example of such a situation:

var client = new DicomClient(

 "someHost",

 0000,

 false,

 "thisService",

 "someServer"

);

await client.AddRequestAsync(dicomRequest1)

await client.SendAsync();

client.Options.RequestTimeout = new System.TimeSpan(1000);

client.Options.MaxCommandBuffer = 100;

await client.AddRequestAsync(dicomRequest2)

await client.SendAsync();

client.Options.RequestTimeout = new System.TimeSpan(800);

client.Options.MaxCommandBuffer = 150;

client.Options.TcpNoDelay = true;

await client.AddRequestAsync(dicomRequest3)

await client.SendAsync();

Code Snippet 12: Situation where stateful is good

If we’d want this client to be stateless, we’d need a method that has all possible parameters
that change the behavior of the method, because this information wouldn’t get stored in the
client itself anymore. But that would mean we’d have to make a huge method with tons of
parameters. Even if those parameters are declared as optional, this isn’t a clean solution.
Here’s how such a method might look in action:

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 49 of 114

await client.AddAndSendAsync(

 DicomRequest,

 new System.TimeSpan(800),

 150,

 true,

 true,

 false,

 200);

Code Snippet 13: Bad usage of stateless

The reasons I combined add and send here is, that by adding the requests in a prior step,
you already change the state of the class, therefore you’d have to combine those steps to
make it stateless. The point however is, that because a lot of parameters are required to
satisfy the needs of a hypothetical program, the usage of a stateless version of the class
gets very messy.

If all that information stayed constant but you still wanted your custom values to be used,
you could just pass it to the constructor when you first initialize, meaning this only is a
problem when your client object constantly must change.

Luckily, the services I must modify for the IPA don’t have changing clients and barely any
advanced options of the client that gets set, so making it stateless is easy. The advantage of
having it stateless is code readability, it allows you to combine a lot of steps and you don’t
have to worry about settings you changed in the client that might affect later usage of it. For
example, you might change some setting for a request you make but then later completely
forget about the changed setting, while you’re still using the same client and this old setting
interferes with your new request.

I won’t actually make it stateless during the IPA yet, because for now the focus is making it
possible to make a mock of a DicomClient and not to completely refactor the code in the
services.

8.2.6 WHICH PARAMETERS DOES THE CONTEXT NEED

In code snippet 11 you can see that we only need the methods to add and send requests.
For simplification we can simply combine those steps. Besides that, the only things that get
used are the Logger and the CancellationToken. The DicomCancellationMode doesn’t get
used and is optional. The Logger constantly stays the same during the usage of the client.
This means we can simply add that to the constructor. This leaves us with those two
parameters we must provide for sending requests to a server.

IEnumerable<DicomRequest> requests,

CancellationToken cancellationToken

Code Snippet 14: Parameters needed for sending requests

By adding some pinging behavior, I described in chapter 7.2.4 and combining the option to
send a single request or multiple requests at once we’d end up with a method called
something like this:

public async Task EchoAndSendRequestsAsync(

 IEnumerable<DicomRequest> requests,

 CancellationToken cancellationToken);

Code Snippet 15: EchoAndSendRequestsAsync parameters

The reason I want to combine those two options is, because it simplifies the interface even
more.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 50 of 114

9 REALISIEREN – IMPLEMENT

9.1 PREFACE

In this chapter I will describe as much code as possible. Every secondary heading stands for

the class I’m about to explain.

9.2 DICOMCLIENTCONTEXT.DICOMCONTEXT

public class DicomContext : IDicomClient

The DicomContext inherits from the IDicomClient. This makes sense, because the
DicomContext must wrap every public property, event and method of the Dicomclient
described in its interface. This enables me to use the DicomContext in places where an
object of the type IDicomClient is expected.

private readonly Dicom.Network.Client.DicomClient dicomClient;

This is the private class field in which the actual wrapped DicomClient gets stored. The
reason the whole namespace is written before .DicomClient is because FO-Dicom has

an obsolete version of the DicomClient in Dicom.Network and if I don’t give the specific

namespace the compiler won’t know which one I want.

I could alternatively set an alias for the namespace to shorten the code a bit, but I’d rather
keep it like this, because there aren’t too many occurrences of this problem in the class and
like this it’s more obvious for other developers where this type is coming from, without having
to check what the alias stands for.

public DicomContext(string host,

 int port, bool useTls, string callingAe, string calledAe,

 int associationRequestTimeoutInMs = DicomClientDefaults.DefaultAssociation

RequestTimeoutInMs,

 int associationReleaseTimeoutInMs = DicomClientDefaults.DefaultAssociation

ReleaseTimeoutInMs,

 int associationLingerTimeoutInMs = DicomClientDefaults.DefaultAssociationL

ingerInMs,

 int? maximumNumberOfRequestsPerAssociation = null)

 {

 this.dicomClient = CreateClient(

 host,

 port,

 useTls,

 callingAe,

 calledAe,

 associationRequestTimeoutInMs,

 associationReleaseTimeoutInMs,

 associationLingerTimeoutInMs,

 maximumNumberOfRequestsPerAssociation);

 }

Code Snippet 16: DicomContext constructor

This is the constructor. It takes all required parameters for initializing a DicomClient and
passes it on to the CreateClient method.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 51 of 114

9.2.1 CREATECLIENT METHOD

private static Dicom.Network.Client.DicomClient CreateClient(params object[] a

rgs) {

This is the start of the CreateClient method. It takes multiple parameters but interprets them
as an array of objects. The object type is something every type inherits from, allowing you to
bundle all kinds of different types, e.g., strings and integers, in one single list or array.
Usually this isn’t recommendable, but it’s alright because it’s a private method and human
error is therefore prevented since nobody will be able to give the parameters in a wrong
manner because the constructor sorts them correctly. The name args stands for

arguments.

foreach (object arg in args) {

Now we loop through each parameter and call the current argument we are looping through
arg.

if (arg is string paramAsString && string.IsNullOrWhiteSpace(paramAsString)) {

If one of those parameters is both a string and this string has either the value null, is empty
or consists only of white spaces it will do the following:

throw new ArgumentNullException("One of the string parameters is null, empty,

or consists only of white-space.");

It throws an exception explaining the problem.

After checking whether the strings are valid and throwing an exception if one of them isn’t,
the method simply initializes a new DicomClient using the array of parameters and casting
the right types to the objects inside of the array:

var client = new Dicom.Network.Client.DicomClient(

 (string)args[0],

 (int)args[1],

 (bool)args[2],

 (string)args[3],

 (string)args[4],

 (int)args[5],

 (int)args[6],

 (int)args[7],

 (int?)args[8]);

return client;

Because the wrapping of the methods, properties and events are repetitive I will only give
one example for each.

public Logger Logger {

 get {

 return dicomClient.Logger;

 }

 set {

 dicomClient.Logger = Logger;

 }

}

Here I created the Logger that matches the DicomClients interfaces Logger but it gets the
Logger of the privately wrapped DicomClient when you want to retrieve the DicomContexts
Logger property and sets the DicomClient Logger property if you give the DicomContexts

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 52 of 114

property a value. This is done by the get and set methods, which are also called setters and
getters. There are some properties that have no setters in the actual DicomClient, therefore
there isn’t one in the DicomContext either for those.

9.3 DICOMGENERATOR.PACSTARGET

9.3.1 CONSTRUCTOR

Originally the DicomClient was initialized in the constructor. I already explained in chapter
7.2.1 how this is bad practice and disables us from injecting a mock into the class when we
try to unit test it. The solution is as I explained dependency injection. This is how the change
looks when you compare the old version on git with the new modified one.

Figure 6: DicomGenerator.PACSTarget constructor git changes

The red part is what I removed and the green one is what I added. As you can see the
modification is very straight forward and allows us to inject the Dicom context when we
initialize the PACSTarget:

return new PACSTarget(

 new DicomContext(

 Program.config.DicomHost,

 Program.config.DicomPort,

 false,

 Program.config.CallingAET,

 Program.config.CalledAET

)

);

In the Save method of the PACSTarget I added a simple check that makes sure the

parameter datasets isn’t null before it proceeds. This is in general a good practice,

because it allows you to catch the error early on and gives you the possibility to give a more
detailed error message. (Bayers, 2012) If you wouldn’t do the null check for parameters that
shouldn’t be null and the parameter provided is null, an error would occur later in the code
where it’d be used. Waiting for that error to occur is a waste of time and the description of
that error might not be as straight forward.

I also changed the pinging behavior by only adding one DicomCEchoRequest to each batch
of DicomDatasets. This is how the changes to the Save method look like after the null

check:

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 53 of 114

Figure 7: DicomGenerator.PACSTarget Save method git changes

9.4 DICOMGENERATOR.PACSTARGETTEST

This is a unit tests class. Let me go through the code.

9.4.1 SAVETEST

The basic premise of this test method is, that it injects a mocked DicomContext and runs the
Save method just to check if it doesn’t throw any errors.

[Fact]

public async Task SaveTest() {

This is the start of the first test method and as you can see it has the attribute [Fact]. This is
an attribute provided by the xUnit and it signifies, that this is in fact a test method and will run
once without any parameters.

var dicomContextMock = new Mock<IDicomContext>();

Here I create the DicomContext mock by using the IDicomContext interface. I describe how
mocks work in chapter 7.2.1.2.

var testDatasetList = new List<DicomDataset>(){

 new DicomDataset(),

 new DicomDataset(),

 new DicomDataset(),

 new DicomDataset(),

 new DicomDataset()

 };

This is the list filled with DicomDatasets, that I will pass over to the Save function as a

parameter. The reason that function needs DicomDatasets is because those datasets are
the data we want to send to a SCP. All we must do first is pack those datasets into requests.
Usually DicomDatasets contain a lot of information and some of it is mandatory. Luckily
when initializing new DicomDatasets the FO-Dicom library doesn’t check if that mandatory
information is in the datasets yet, so for unit testing we can just insert empty DicomDatasets
into the list. If we required DicomDatasets containing the mandatory information I’d have to

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 54 of 114

save those DicomDatasets inside of DicomFiles and load those when starting the unit test.
There are alternatives to loading test data from a file, but it is the most straight forward
solution in this case.

var pacsTarget = new PACSTarget(dicomContextMock.Object);

In this line of code I simply initialize a new PACSTarget and inject the mocked Dicom

context.

The last line of the TestSave method simply runs the Save method providing the list of

empty DicomDatasets as fodder:

await pacsTarget.Save(testDatasetList);

9.4.2 SAVEDATASETSISNULLTEST

Just like the test method before it, this one also has the [Fact] attribute:

[Fact]

public async Task SaveDatasetsIsNullTest() {

And I inject a Dicom context mock here as well:

var dicomContextMock = new Mock<IDicomContext>();

var pacsTarget = new PACSTarget(dicomContextMock.Object);

This time however I want to test if it throws an error if I give null as a parameter instead of
DicomDatasets. This error should be an ArgumentNullException. There are a lot of different
kinds of exceptions, but this one matches this specific situation.

await Assert.ThrowsAsync<ArgumentNullException>(async () => {

 await pacsTarget.Save(null);

 });

Assert.ThrowsAsync simply checks if the given exception in the <> brackets matches

the one being thrown by the method. The part that comes afterwards is called a lambda. A
lambda is basically a block of code you can pass in as a parameter of a method. (Fowler,
2004) You might be wondering what the Async in ThrowsAsync means and the what the
await is all about. Those are important keywords in asynchronous programming. I will not

explain in detail what they do in this IPA, but it basically allows a part of code to not block the
rest of the Program. So during the time a method is awaiting an asynchronous task to finish
other parallel running tasks can still run.

This was already the last line of code for this test so let’s move on to the next.

9.4.3 SAVEDATASETSCOUNTEQUALSREQUESTCOUNTTEST

The basic idea of this test is, that we give the Save method a certain amount of

DicomDatasets to pack inside of requests and then we check if the amount of requests – 1
(ping request) matches the amount of DicomDatasets we provided the Save method with.

[Fact]

public async Task SaveDatasetsCountEqualsRequestCountTest() {

You might be getting tired of seeing the [Fact] attribute, but facts don’t care about your
feelings.

Anyways, we start off by defining the following variable:

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 55 of 114

int actualRequestsNum = 0;

In this variable we will store the amount of store requests that will get passed to the
AddRequestsAsync method.

var dicomContextMock = new Mock<IDicomContext>();

dicomContextMock

 .Setup(

 context => context.AddRequestsAsync(It.IsAny<List<DicomRequest>>()))

 .Callback<IEnumerable<DicomRequest>>((requests) => {

 foreach(var request in requests) {

 ++actualRequestsNum;

 }

 --actualRequestsNum;

 });

As you can see above we continue to create a Dicom context mock and setting it up in a
way, that if the AddRequestsAsync method gets called, the list of requests gets looped
through and for each request it increments the actualRequestsNum by one, but removes

one after the looping is finished, so the request responsible for pinging doesn’t get count,
because we will only want to compare amount of store requests with the amount of
DicomDatasets we provided the method with.

Like with all previous method we inject the Dicom context mock and like in the SaveTest

method we create a list of DicomDatasets, which we count and then add the length of this
list as an integer to the expectedRequestsNum. I won’t add the respective code-snippets

here because those steps are straight forward.

We run the Save method and then compare the expected number of requests with the

actual number of requests like so:

Assert.Equal(expectedRequestsNum, actualRequestsNum);

9.5 DICOMTOPACSLOADER.DICOMTOPACSLOADER

The changes to this service are very similar to the ones I mentioned in
DicomGenerator.PACSTarget, therefore I won’t show the modifications here again. I simply
added dependency injection for the Dicom context.

9.6 DICOMTOPACSLOADER.TOPACSLOADERTEST

Because the Load method, the one I have to unit test is extremely complex for being a

single method, I couldn’t write a working unit test for it. This is one of the reasons for keeping
methods simpler. Of course it rarely makes sense to make a one-liner method and that’s not
what I’m implying. It’s important to find a balance of how complex a unit of code should be,
but it should be easily digestible for other developers and it should be possible to write unit
tests for the code you write. (mortalapeman, 2014)

After the IPA is over, me or a coworker will have to refactor the Load method to enable unit

testing. I was able to create something that would work if it wouldn’t require hours of
debugging to get it running. I will add the code of the unfinished unit test in the appendix, but
won’t go into further detail, because explaining it would require giving a lot of context
irrelevant to the IPA.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 56 of 114

9.7 REPORTSENDER.PACSTARGET

The modification of this service is very similar to the changes in
DicomGenerator.PacsTarget. The only difference is that I’m not able to do dependency
injection over the constructor, but instead must pass in the Dicom client context as a
parameter in the method where it gets used:

public async Task SendReports(List<DicomDataset> reports, IDicomContext client

) {

The other modifications are too similar to the ones in the DicomGenerator to explain here
again, but the above-mentioned change does have an effect to the unit tests.

9.8 REPORTSSENDER.TEST

9.8.1 CONSTRUCTOR AND DISPOSE

public class ReportSenderTest : IDisposable {

As you can see the class for the unit tests inherits from the IDisposable interface. The only
method that this interface defines is the following.

void Dispose();

This method gets called after the unit tests you executed are done and you can add
whatever code you want in it. It’s very useful if you want to reset things to the way they were
if a unit test changed something important. I use it for doing the following.

public void Dispose() {

 testDatasetList = null;

}

If you’re wondering what that variable comes from, it’s a class property:

private List<DicomDataset> testDatasetList;

The reason I set it to null in the Dispose method is, because it generally makes sense to

keep test classes clean and clear things you don’t need any more after the unit tests are
done. It may be useless for this specific property though.

I initialize the testDatasetList property in the constructor:

public ReportSenderTest() {

 testDatasetList = new List<DicomDataset>();

 DirectoryInfo testFilesDir = new DirectoryInfo(

 "..\\..\\..\\testFiles\\");

 foreach (var file in testFilesDir.GetFiles("*.dcm"))

 {

 testDatasetList.Add(DicomFile.Open(file.FullName).Dataset);

 }

}

 Code Snippet 17: ReportSenderTest constructor

In the constructor I first initialize the testDatasetList property, then I initialize a new

DirectoryInfo object pointing to the folder containing test Dicom files and then I loop

through that folder and for every file that ends with .dcm I extract its dataset and add it to

the class property testDatasetList. The test files were generated using the

DicomGenerator and contain mostly random values instead of sensitive information.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 57 of 114

Me, Apr 16 14:35

Hi, just a question out of curiosity. The IDicomClient interface doesn't define all
properties of the DicomClient. Namely it misses the Host, Port, UseTls, CallingAe,
CalledAe and IsSendRequired properties. Is there some specific reason for this? I
just realized when I wanted to do dependency injection. It's not a problem because
there's workarounds for that, but I'm just wondering

Reinhard Gruber, Apr 16 19:56

IDicomClient is an older interface. When it was created, these properties you
mention have not been properties of DicomClient, but they were passed as
parameter of the method SendAsync. This made it possible to use the same
DicomClient instance for several different connections, which caused errors. So we
changed the behavior in that way that the connection parameters are now passed
via constructor, so having one DicomClient per connection. With that step the
properties you mentioned where added to DicomClient class, but we did not forward
it do IDicomClient interface for no specific reason. If you would need it in interface,
then feel free to create a pull request and add them. (Gruber, 2021)

The unit tests are almost identical to those in the DicomGenerator.PacsTargetTest

class. One difference though is that I use the datasets with fake information as shown
above, because it would otherwise throw an error when the DicomGenerator tries to convert
the DicomDatasets to DicomFiles if I would just use empty DicomDatasets instead. Another
major difference is, as I described earlier, that the Dicom client context has to be passed as
a parameter to the method instead of the constructor. This is also how I inject the mock:

await pacsTarget.SendReports(testDatasetList, dicomContextMock.Object);

9.9 IDICOMCLIENT

I mentioned earlier that I had no write access to the FO-Dicom library, so you might be
wondering how I did changes to it then.

Well, it started off when I went on FO-Dicoms Gitter page, a public website where people
discuss GitHub projects and asked the following question:

I received an answer to this question by one of the main developers of the FO-Dicom library:

This basically means, that the properties aren’t intentionally missing in the interface and just
weren’t added, when there were changes to the DicomClient. It wasn’t a hassle for me to
add some properties to an interface and it would be beneficial for the IPA because it would
allow me to change the inheritance of the DicomContext to the libraries IDicomClient

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 58 of 114

interface. That would make our code a lot less redundant, because it doesn’t make sense to
have multiple interfaces that look pretty much the same.

9.10 PLAYGROUND.DICOMFACADE

This class is just a prototype for potential future use. Since the IDicomClient interface has
been fixed by me, there is little purpose for the DicomContext since there is no difference in
its IDicomContext and the IDicomClients interface. But having implemented the
DicomContext in form of the proxy pattern creates some independence, better exception
handling and is a good steppingstone for future improvement, for example in case we decide
to implement a Dicom client facade like my prototype.

The prototype starts with the following line:

public class DicomFacade : IDicomFacade {

It inherits from the IDicomFacade. I created this interface to enable dependency injection if
the DicomFacade ever gets used. In general it makes sense to make interfaces for all
important classes that get used by other classes so you can mock in your unit tests. This
isn’t the primary purpose of interfaces though and maybe at some point in the future one will
be able to mock things without needing an interface.

private readonly DicomClient dicomClient;

This is the wrapped DicomClient. All calls will eventually be redirected to this client, even
though the interface of the facade looks different.

The constructor of the DicomFacade looks almost the same as the on from the
DicomContext. The only difference is that a Logger is also provided as a parameter of the
constructor. This partially enables the class to be stateless, because I don’t have to add a
property in which you can set the Logger from outside. In the CreateClient() method I

added the following line:

if (args[5] != null) client.Logger = (Logger)args[5];

args[5] is the Logger handed down as a parameter of the constructor. So, if this logger

isn’t null, I set the privately wrapped client’s logger as the one from the constructor.

The real magic happens in the following method:

public async Task EchoAndSendRequestsAsync(IEnumerable<DicomRequest> requests,

 CancellationToken cancellationToken)

 {

As you can see from the method name it is responsible to ping the SCP first and then send a
list of requests. This is beneficial in the sense, that it would greatly unify and simply the
implementations of the interface, as I explained earlier. The list of requests is of the type
IEnumerable because this enables any kind of list or array to be provided as a parameter, so
nobody has to convert it to a specific type of collection first.

var echoRequest = new DicomCEchoRequest();

Me, Apr 16 22:01

Thank you for explaining @gofal !
I've created a PR with the added
properties

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 59 of 114

This is the first line of the method. It initializes a new DicomCEchoRequest. A C-echo
request serves as a kind pinging functionality.

echoRequest.OnResponseReceived = (request, response) => {

 dicomClient.Logger.Info("C-

Echo request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} with status {status}", dicomClient.Host, dicomClient.Port, dicomCl

ient.CalledAe, response.Status.ToString());

};

echoRequest.OnTimeout = (request, response) => {

 dicomClient.Logger.Error("C-

Echo request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} timed out", dicomClient.Host, dicomClient.Port, dicomClient.Called

Ae);

 throw new DicomNetworkException("C-Echo request timed out");

};

Code Snippet 18: echo request OnResponseReceived

As you can see I add a lambda method to the OnResponseReceived event of the C-echo

request, that simply logs the response details and another lambda method to the
OnTimeout event that logs some information and throws an error. I partially copied the code

from a previous implementation of the Dicom client written by Michael Grossmann, a former
co-worker. The parameters both lambda method receive are the request itself and the
response it received after having been sent.

The rest of the method simply looks like the following for now:

await this.dicomClient.AddRequestsAsync(requests);

await this.dicomClient.SendAsync(cancellationToken);

This should be self-explanatory by now. It is important to note though, that FO-Dicoms
DicomClient treats requests added with AddRequestsAsync() and

AddRequestAsync()differently on first look. Besides only being able to add a singular

request per call of the AddRequestAsync() method I want to point out something else:

AddRequestAsync():

State.AddRequestAsync(dicomRequest);

AddRequestsAsync():

foreach (var request in requests)

 await State.AddRequestAsync(request).ConfigureAwait(false);

As you can see the AddRequestsAsync() calls ConfigureAwait(false) on every

request that gets added. The ConfigureAwait() method is available to every

asynchronous task and it determines on which Thread the program should continue on.
When developers create libraries it’s important for them to set it to false for asynchronous

task to prevent deadlocks. This isn’t important to the IPA so I won’t explain in detail what this
means, but it’s relevant to me to know, that the requests don’t really get handled differently
in the two methods besides one of them being safer against deadlocks, so it’s okay to just
use the AddRequestsAsync() even for single requests.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 60 of 114

9.11 PLAYGROUND.PLAYGROUNDCLIENT

This is a class with which I tested my DicomFacade. It has a private field for the
DicomFacade object it uses:

private IDicomFacade dicomFacade;

And it has a constructor in which this DicomFacade gets initialized:

public PlayGroundClient() {

 // set up connection with server

 var host = "127.0.0.1";

 var port = 55555;

 var callingAE = "PlayGroundClient";

 var calledAe = "PlayGroundServer";

 dicomFacade = new DicomFacade(host, port, false, callingAE, called

Ae);

 }

Code Snippet 19: DicomFacade constructor

The reason I don’t do any fancy dependency injection is because this is a throw-away class
that will never join in on the develop branches party, so it’s unimportant to make it unit
testable. As you can see, I use real values for the Dicom SCP information like for example
the host IP. The reason is because I have an actual Dicom SCP with which I can test things
with.

public async Task sendDicoms(DicomFile[] dicomFiles, CancellationToken cancell

ationToken) {

 var storeRequests = new List<DicomCStoreRequest>();

 foreach(var dicomFile in dicomFiles) {

 storeRequests.Add(new DicomCStoreRequest(dicomFile, DicomPrior

ity.Medium));

 }

 await dicomContext.EchoAndSendRequestsAsync(storeRequests, cancell

ationToken);

 }

Code Snippet 20: sendDicoms method

This is the method in which the test data gets sent to the test server. It creates a list of C-
store requests and adds every DicomFile provided through the parameters by first
converting them to C-store requests. It then calls the EchoAndSendRequestsAsync()

method of the Dicom facade with the requests as a parameter.

9.12 PLAYGROUND.PROGRAM

Because the code of the test Dicom server requires a lot of knowledge of Dicom that is
irrelevant to the IPA I won’t explain it in detail. I will however show how I test the facade by
making a flowchart of how the program operates.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 61 of 114

Now all I have to do is debug the program and check what kind of responses I get to figure

out if the facade works. Turns out it does.

Start

Console
input

Is input Enter
key?

Console write
“wrong input”

No

Yes
Get example

data files

Send them to the
test server

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 62 of 114

10 KONTROLLIEREN – CONTROL

10.1 PLANNED TESTS

 Table 5: Test results

When the field in the above table is green it was a success, if it’s Orange it hasn’t been
implemented and if its red the result didn’t meet the expectations. All unplanned unit tests
succeeded, but, due to being less important, aren’t in the table.

Test

ID

Result and test method or tested class Person who

tested

Date

1 TestAddRequestAsyncNullAsParam() Gabriel S. 19.04.2021

2 Not implemented Gabriel S. 19.04.2021

3 Not implemented Gabriel S. 19.04.2021

4 Not implemented Gabriel S. 19.04.2021

5 AutomatedEndToEndTest() Gabriel S. 19.04.2021

6 SaveDatasetsIsNullTest() Gabriel S. 19.04.2021

7 SaveDatasetsCountEqualsRequestCountTest() Gabriel S. 19.04.2021

8 LoadTest() Gabriel S. 19.04.2021

9 Not implemented Gabriel S. 19.04.2021

10 SaveDatasetsIsNullTest() Gabriel S. 19.04.2021

11 SaveDatasetsCountEqualsRequestCountTest() Gabriel S. 19.04.2021

12 SaveDatasetsIsNullTest() Gabriel S. 19.04.2021

13 SaveDatasetsCountEqualsRequestCountTest() Gabriel S. 19.04.2021

14 DicomGenerator Gabriel S. 19.04.2021

15 DicomToPacsLoader (only tested pinging) Gabriel S. 19.04.2021

16 JobReceiver Gabriel S. 19.04.2021

17 ReportSender Gabriel S. 19.04.2021

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 63 of 114

11 AUSWERTEN – EVALUATE

11.1 DICOMGENERATOR

I tested the DicomGenerator by setting the target of the DicomGenerator to my local Orthanc
server. The Orthanc is a PACS (Picture Archiving And Communication System) which
serves as a Dicom SCP and SCU. I then ran the DicomGenerator service and got the
following logs documenting my success:

Figure 8: DicomGenerator proof of test

Then I checked if the data arrived at my PACS and I wasn’t disappointed:

Figure 9: DicomGenerator result

Two studies arrived, just as I anticipated it.

11.2 JOBRECEIVER

I tested the JobReceiver by starting it up and then going into my Orthanc. From there I sent
a generated test study to the JobReceiver by selecting it as the target:

Figure 10: JobReceiver way of testing

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 64 of 114

After I clicked on the target ScanDiags it sent it to the JobReceiver and the logs showed a
full-blown success:

Figure 11: JobReceiver proof of test

11.3 DICOMTOPACSLOADER

I only tested the pinging mechanism, because it does that automatically and I thought it
would be a clear enough indication, that the DicomContext actually works. Here are the log
results for when I set the target for the pinging to the local Orthanc server and started the
service:

Figure 12: DicomToPacsLoader proof of test

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 65 of 114

11.4 REPORTSENDER

The report sender showed some very odd behavior. Even though the configuration was
pretty much the same as of the JobReceiver, all it really did is log that sending the reports
was finished, which I don’t believe at all:

Figure 13: Report sender odd behavior

I tried testing it by sending a text report to the service using Orthanc, but Orthanc simply got
stuck trying to send it to the service:

Figure 14: Orthanc stuck sending

I’m quite sure the configuration was correct and the data I tried sending to the service wasn’t
corrupt, but there’s still a possibility I made a mistake somewhere. I switched to the develop
branch instead, where my DicomContext isn’t implemented yet and tried the same steps as I
described above and got the same results. This means the problem doesn’t lie in the
DicomContext and the service needs a general debugging. My IPA isn’t about debugging
services as a whole though, so I will leave it at that for now.

11.5 UNIT TESTS

I can’t give a conclusion and write about the repercussions of every single unit test because
there’s not much to say about them and I already documented how they work and why one
of them failed. Some of them weren’t implemented, because they didn’t say much about
whether the method they tested would work in a realistic setting.

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 66 of 114

APPENDIX
12 GLOSSARY

Dependency Injection When you give an object another object it
depends on through the constructor.
(Wikipedia, 2021)

FO-Dicom Fellow Oak Dicom is a library under the
Microsoft Public License and used in all C#
ScanDiags services.

Interface Either a point where two subjects interact or
a type a class can inherit from e.g., a VW
can inherit of the type car.

Mock A fake object resembling a real one, that
doesn’t do anything when you call the same
methods.

Orthanc A PACS application.

PACS Picture Archiving and Communication
System. Often used in hospitals to manage
radiological data.

Pattern A reusable software design solution to a
commonly occurring problem. (Wikipedia,
2021)

SCP Service Class Provider (Kind of a server)

SCU Service Class User (Kind of a client)

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 67 of 114

13 TABLE OF FIGURES

Table 1: IPERKA ... 7

Table 2: Test descriptions ... 29

Table 3: Test objects ... 31

Table 4: Test cases overview .. 32

Table 5: Test results.. 62

Figure 1: Adapter example .. 27

Figure 2: Unit test without mocking client .. 41

Figure 3: Unit test with mocking client ... 41

Figure 4: DicomContext concept ... 44

Figure 5: Client and Context, two interfaces, one problem .. 45

Figure 6: DicomGenerator.PACSTarget constructor git changes .. 52

Figure 7: DicomGenerator.PACSTarget Save method git changes 53

Figure 8: DicomGenerator proof of test ... 63

Figure 9: DicomGenerator result ... 63

Figure 10: JobReceiver way of testing .. 63

Figure 11: JobReceiver proof of test ... 64

Figure 12: DicomToPacsLoader proof of test .. 64

Figure 13: Report sender odd behavior ... 65

Figure 14: Orthanc stuck sending ... 65

Code Snippet 1: Bad idea 1 .. 42

Code Snippet 2: Bad idea 2 .. 42

Code Snippet 3: Dependency injection ... 43

Code Snippet 4: Creating and injecting a mock ... 43

Code Snippet 5: Injecting the DicomContext ... 43

Code Snippet 6: Mocking the DicomContext ... 43

Code Snippet 7: DicomGenerator.PACSTarget.Save() ... 45

Code Snippet 8: JobReceiver.PacsTarget.SendReports() ... 46

Code Snippet 9: Stateful class .. 47

Code Snippet 10: Stateless class .. 47

Code Snippet 11: Used methods, fields and events from IDicomClient 48

Code Snippet 12: Situation where stateful is good .. 48

Code Snippet 13: Bad usage of stateless .. 49

Code Snippet 14: Parameters needed for sending requests ... 49

Code Snippet 15: EchoAndSendRequestsAsync parameters ... 49

Code Snippet 16: DicomContext constructor ... 50

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 68 of 114

Code Snippet 17: ReportSenderTest constructor .. 56

Code Snippet 18: echo request OnResponseReceived ... 59

Code Snippet 19: DicomFacade constructor ... 60

Code Snippet 20: sendDicoms method ... 60

14 BIBLIOGRAPHY

Bayers, M. (2012, 12 01). Is it a good or bad practice to check for NULL? [closed]. From
stackoverflow.com: https://stackoverflow.com/questions/8347163/is-it-a-good-or-bad-
practice-to-check-for-null

Fowler, M. (2004, 09 08). Lambda. From martinfowler.com:
https://martinfowler.com/bliki/Lambda.html

Gruber, R. (2021, 04 16). fo-dicom/fo-dicom. From https://gitter.im/: https://gitter.im/fo-
dicom/fo-dicom?at=5dab9e7b714b8b0538233564

kgiannakakis. (2011, 11 22). stackoverflow.com. From Stateless vs Stateful:
https://stackoverflow.com/questions/5329618/stateless-vs-stateful

matt. (2020, December 5). How do I mock a class without an interface? From
stackoverflow.com: https://stackoverflow.com/questions/20400734/how-do-i-mock-a-
class-without-an-interface

Microsoft. (2021, 04 21). requirements. From code.visualstudio.com:
https://code.visualstudio.com/docs/supporting/requirements

mortalapeman. (2014, 09 13). Why are we supposed to use short functions to sectionalize
our code? From softwareengineering.stackexchange.com:
https://softwareengineering.stackexchange.com/questions/210372/why-are-we-
supposed-to-use-short-functions-to-sectionalize-our-code

Okhravi, C. (2017, 08 06). Adapter Pattern – Design Patterns (ep 8). From YouTube:
https://www.youtube.com/watch?v=2PKQtcJjYvc

Schafflützel, G. (2021, January 15). Dicom Know How. From Azure:
https://dev.azure.com/balzano/ScanDiags/_wiki/wikis/ScanDiags.wiki/388/Introductio
n

superpig. (2020, May 09). forum.unity.com. From Design Patterns Mix-up?:
https://forum.unity.com/threads/design-patterns-mix-up.886345/

Wikipedia. (2021, 04 08). Adapter pattern. From Wikipedia:
https://en.wikipedia.org/wiki/Adapter_pattern

Wikipedia. (2021, 04 21). Software design pattern. From Wikipedia:
https://en.wikipedia.org/wiki/Software_design_pattern

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 69 of 114

15 CODE

15.1 DICOMCLIENTCONTEXT.IDICOMCONTEXT

using System;

using System.Threading.Tasks;

using Dicom.Network;

using Dicom.Network.Client;

using System.Threading;

using System.Collections.Generic;

using Dicom.Log;

using System.Text;

namespace DicomClientContext

{

 /// <summary>

 /// The interface for the Dicom client context

 /// </summary>

 public interface IDicomContext

 {

 /// <summary>

 /// The host you want to connect to

 /// </summary>

 string Host { get; }

 /// <summary>

 /// The port to use for connecting to the host

 /// </summary>

 int Port { get; }

 /// <summary>

 /// True if Transport Layer Security should be on, false if not

 /// </summary>

 bool UseTls { get; }

 /// <summary>

 /// Application entity name of your client

 /// </summary>

 string CallingAe { get; }

 /// <summary>

 /// Application entity name of the server you want to connect to

 /// </summary>

 string CalledAe { get; }

 /// <summary>

 /// True if sending another request is required, false if not

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 70 of 114

 /// </summary>

 bool IsSendRequired { get; }

 /// <summary>

 /// Additional negotiation items to present during an association

 /// </summary>

 List<DicomExtendedNegotiation> AdditionalExtendedNegotiations { get; s

et; }

 /// <summary>

 /// Additional presentation contexts to present during an association

 /// </summary>

 List<DicomPresentationContext> AdditionalPresentationContexts { get; s

et; }

 /// <summary>

 /// How long the association should stay alive after all requests have

 been processed

 /// </summary>

 int AssociationLingerTimeoutInMs { get; }

 /// <summary>

 /// The amount of time to wait for an association release response aft

er sending an association release request

 /// </summary>

 int AssociationReleaseTimeoutInMs { get; }

 /// <summary>

 /// The amount of time to wait for an association response after sendi

ng an association request

 /// </summary>

 int AssociationRequestTimeoutInMs { get; }

 /// <summary>

 /// The encoding to fallback to when all else fails

 /// </summary>

 Encoding FallbackEncoding { get; set; }

 /// <summary>

 /// The logger with which to log events

 /// </summary>

 Logger Logger { get; set; }

 /// <summary>

 /// The maximum amount of requests that can be done in one association

.

 /// Starts a new association if it's over the max value.

 /// </summary>

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 71 of 114

 int? MaximumNumberOfRequestsPerAssociation { get; }

 /// <summary>

 /// The network manager

 /// </summary>

 NetworkManager NetworkManager { get; set; }

 /// <summary>

 /// The handler for when a C-store request is made to the client

 /// </summary>

 DicomClientCStoreRequestHandler OnCStoreRequest { get; set; }

 /// <summary>

 /// The handler for when a N-

event report request is made to the client

 /// </summary>

 DicomClientNEventReportRequestHandler OnNEventReportRequest { get; set

; }

 /// <summary>

 /// Options for the Dicom service

 /// </summary>

 DicomServiceOptions Options { get; set; }

 /// <summary>

 /// The event handler for when an association is accepted

 /// </summary>

 event EventHandler<Dicom.Network.Client.EventArguments.AssociationAcce

ptedEventArgs> AssociationAccepted;

 /// <summary>

 /// The event handler for when an association is rejected

 /// </summary>

 event EventHandler<Dicom.Network.Client.EventArguments.AssociationReje

ctedEventArgs> AssociationRejected;

 /// <summary>

 /// The event handler for when an association is released

 /// </summary>

 event EventHandler AssociationReleased;

 /// <summary>

 /// The event handler for when a request times out

 /// </summary>

 event EventHandler<Dicom.Network.Client.EventArguments.RequestTimedOut

EventArgs> RequestTimedOut;

 /// <summary>

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 72 of 114

 /// The event handler for when the state of the client changes

 /// </summary>

 event EventHandler<Dicom.Network.Client.EventArguments.StateChangedEve

ntArgs> StateChanged;

 /// <summary>

 /// Add a single request to the clients request que

 /// </summary>

 /// <param name="dicomRequest">The request to add</param>

 Task AddRequestAsync(DicomRequest dicomRequest);

 /// <summary>

 /// Add multiple requests to the clients requests que

 /// </summary>

 /// <param name="dicomRequests">The requests to add</param>

 Task AddRequestsAsync(IEnumerable<DicomRequest> dicomRequests);

 /// <summary>

 /// Add multiple requests to the client requests que

 /// </summary>

 /// <param name="dicomRequests">As many requests as you want, each a s

eparate parameter</param>

 Task AddRequestsAsync(params DicomRequest[] dicomRequests);

 /// <summary>

 /// The amount of requests you can send and process at the same time.

If it has to do more than defined here, it'll do them synchronously

 /// </summary>

 /// <param name="invoked">How many requests you can send at the same t

ime</param>

 /// <param name="performed">How many requests you can process at the s

ame time</param>

 void NegotiateAsyncOps(int invoked = 0, int performed = 0);

 /// <summary>

 /// Send the queued requests to the Dicom server

 /// </summary>

 /// <param name="cancellationToken">The cancellation token to stop the

 task</param>

 /// <param name="cancellationMode">If the connection should be aborted

 or cleanly released</param>

 Task SendAsync(CancellationToken cancellationToken = default, DicomCli

entCancellationMode cancellationMode = default);

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 73 of 114

15.2 DICOMCLIENTCONTEXT.DICOMCONTEXT

using System;

using System.Threading.Tasks;

using Dicom.Network;

using Dicom.Network.Client;

using System.Threading;

using System.Collections.Generic;

using Dicom.Log;

using System.Text;

namespace DicomClientContext

{

 /// <summary>

 /// The Dicom context according to proxy pattern

 /// </summary>

 public class DicomContext : IDicomContext

 {

 /// <summary>

 /// The

 /// </summary>

 private readonly Dicom.Network.Client.DicomClient dicomClient;

 public string Host {

 get {

 return dicomClient.Host;

 }

 }

 public int Port {

 get {

 return dicomClient.Port;

 }

 }

 public bool UseTls {

 get {

 return dicomClient.UseTls;

 }

 }

 public string CallingAe {

 get {

 return dicomClient.CallingAe;

 }

 }

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 74 of 114

 public string CalledAe {

 get {

 return dicomClient.CalledAe;

 }

 }

 public bool IsSendRequired {

 get {

 return dicomClient.IsSendRequired;

 }

 }

 public Logger Logger {

 get {

 return dicomClient.Logger;

 }

 set {

 dicomClient.Logger = Logger;

 }

 }

 public DicomServiceOptions Options {

 get {

 return dicomClient.Options;

 }

 set {

 dicomClient.Options = Options;

 }

 }

 public List<DicomPresentationContext> AdditionalPresentationContexts {

 get {

 return dicomClient.AdditionalPresentationContexts;

 }

 set {

 dicomClient.AdditionalPresentationContexts = AdditionalPresent

ationContexts;

 }

 }

 public List<DicomExtendedNegotiation> AdditionalExtendedNegotiations {

 get {

 return dicomClient.AdditionalExtendedNegotiations;

 }

 set {

 dicomClient.AdditionalExtendedNegotiations = AdditionalExtende

dNegotiations;

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 75 of 114

 }

 }

 public Encoding FallbackEncoding {

 get {

 return dicomClient.FallbackEncoding;

 }

 set {

 dicomClient.FallbackEncoding = FallbackEncoding;

 }

 }

 public int AssociationRequestTimeoutInMs {

 get {

 return dicomClient.AssociationLingerTimeoutInMs;

 }

 }

 public int AssociationReleaseTimeoutInMs {

 get {

 return dicomClient.AssociationReleaseTimeoutInMs;

 }

 }

 public int AssociationLingerTimeoutInMs {

 get {

 return dicomClient.AssociationLingerTimeoutInMs;

 }

 }

 public int? MaximumNumberOfRequestsPerAssociation {

 get {

 return dicomClient.MaximumNumberOfRequestsPerAssociation;

 }

 }

 public DicomClientCStoreRequestHandler OnCStoreRequest {

 get {

 return dicomClient.OnCStoreRequest;

 }

 set {

 dicomClient.OnCStoreRequest = OnCStoreRequest;

 }

 }

 public DicomClientNEventReportRequestHandler OnNEventReportRequest {

 get {

 return dicomClient.OnNEventReportRequest;

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 76 of 114

 }

 set {

 dicomClient.OnNEventReportRequest = OnNEventReportRequest;

 }

 }

 public NetworkManager NetworkManager {

 get {

 return dicomClient.NetworkManager;

 }

 set {

 dicomClient.NetworkManager = NetworkManager;

 }

 }

 public event EventHandler<Dicom.Network.Client.EventArguments.Associat

ionAcceptedEventArgs> AssociationAccepted {

 add {

 dicomClient.AssociationAccepted += value;

 }

 remove {

 dicomClient.AssociationAccepted -= value;

 }

 }

 public event EventHandler<Dicom.Network.Client.EventArguments.Associat

ionRejectedEventArgs> AssociationRejected {

 add {

 dicomClient.AssociationRejected += value;

 }

 remove {

 dicomClient.AssociationRejected -= value;

 }

 }

 public event EventHandler AssociationReleased {

 add {

 dicomClient.AssociationReleased += value;

 }

 remove {

 dicomClient.AssociationReleased -= value;

 }

 }

 public event EventHandler<Dicom.Network.Client.EventArguments.StateCha

ngedEventArgs> StateChanged {

 add {

 dicomClient.StateChanged += value;

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 77 of 114

 }

 remove {

 dicomClient.StateChanged -= value;

 }

 }

 public event EventHandler<Dicom.Network.Client.EventArguments.RequestT

imedOutEventArgs> RequestTimedOut {

 add {

 dicomClient.RequestTimedOut += value;

 }

 remove {

 dicomClient.RequestTimedOut -= value;

 }

 }

 public void NegotiateAsyncOps(int invoked = 0, int performed = 0)

 {

 dicomClient.NegotiateAsyncOps(invoked, performed);

 }

 public async Task AddRequestAsync(DicomRequest dicomRequest)

 {

 if (dicomRequest == null) {

 var paramName = nameof(dicomRequest);

 throw new ArgumentNullException(paramName, $"Parameter {paramN

ame} is null.");

 }

 await dicomClient.AddRequestAsync(dicomRequest);

 }

 public async Task AddRequestsAsync(IEnumerable<DicomRequest> dicomRequ

ests)

 {

 if (dicomRequests == null) {

 var paramName = nameof(dicomRequests);

 throw new ArgumentNullException(paramName, $"Parameter {paramN

ame} is null.");

 }

 await dicomClient.AddRequestsAsync(dicomRequests);

 }

 public async Task AddRequestsAsync(params DicomRequest[] dicomRequests

)

 {

 if (dicomRequests == null) {

 var paramName = nameof(dicomRequests);

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 78 of 114

 throw new ArgumentNullException(paramName, $"Parameter {paramN

ame} is null.");

 }

 foreach (DicomRequest request in dicomRequests) {

 if (request == null) {

 var paramName = nameof(request);

 throw new ArgumentNullException(paramName, $"Parameter {pa

ramName} is null.");

 }

 }

 await dicomClient.AddRequestsAsync(dicomRequests);

 }

 public async Task SendAsync(CancellationToken cancellationToken = defa

ult(CancellationToken),

 DicomClientCancellationMode cancellationMode = DicomClientCancella

tionMode.ImmediatelyReleaseAssociation)

 {

 if (cancellationToken == null) {

 var paramName = nameof(cancellationToken);

 throw new ArgumentNullException(paramName, $"Parameter {paramN

ame} is null.");

 }

 if (cancellationToken == null) {

 var paramName = nameof(cancellationMode);

 throw new ArgumentNullException(paramName, $"Parameter {paramN

ame} is null.");

 }

 await dicomClient.SendAsync(cancellationToken, cancellationMode);

 }

 /// <summary>

 /// Takes all required parameters for initializing a DicomClient and p

asses it on to the CreateClient method

 /// </summary>

 /// <param name="host">Host</param>

 /// <param name="port">Port</param>

 /// <param name="useTls">Tls security on or off</param>

 /// <param name="callingAe">Calling application entity title</param>

 /// <param name="calledAe">Called application entity title</param>

 /// <param name="associationRequestTimeoutInMs">Association request ti

meout</param>

 /// <param name="associationReleaseTimeoutInMs">Association release ti

meout</param>

 /// <param name="associationLingerTimeoutInMs">Association linger time

out</param>

 /// <param name="maximumNumberOfRequestsPerAssociation">Max number of

requests per association</param>

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 79 of 114

 public DicomContext(string host, int port, bool useTls, string calling

Ae, string calledAe,

 int associationRequestTimeoutInMs = DicomClientDefaults.DefaultAss

ociationRequestTimeoutInMs,

 int associationReleaseTimeoutInMs = DicomClientDefaults.DefaultAss

ociationReleaseTimeoutInMs,

 int associationLingerTimeoutInMs = DicomClientDefaults.DefaultAsso

ciationLingerInMs,

 int? maximumNumberOfRequestsPerAssociation = null)

 {

 this.dicomClient = CreateClient(

 host,

 port,

 useTls,

 callingAe,

 calledAe,

 associationRequestTimeoutInMs,

 associationReleaseTimeoutInMs,

 associationLingerTimeoutInMs,

 maximumNumberOfRequestsPerAssociation);

 }

 private static Dicom.Network.Client.DicomClient CreateClient(params ob

ject[] args)

 {

 foreach (object arg in args) {

 if (arg is string paramAsString && string.IsNullOrWhiteSpace(p

aramAsString)) {

 throw new ArgumentNullException("One of the string paramet

ers is null, empty, or consists only of white-space.");

 }

 }

 var client = new Dicom.Network.Client.DicomClient(

 (string)args[0],

 (int)args[1],

 (bool)args[2],

 (string)args[3],

 (string)args[4],

 (int)args[5],

 (int)args[6],

 (int)args[7],

 (int?)args[8]);

 return client;

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 80 of 114

15.3 PLAYGROUND.PROGRAM

using System;

using Dicom;

using System.Threading.Tasks;

using System.Collections.Generic;

using System.IO;

using System.Threading;

namespace PlayGround

{

 class Program

 {

 static async Task Main(string[] args)

 {

 var PlayGroundClient = new PlayGroundClient();

 var PlayGroundServer = new PlayGroundServer();

 var cancellationToken = new CancellationToken();

 Console.Clear();

 Console.ForegroundColor = ConsoleColor.Blue;

 Console.WriteLine("----- Instructions -----");

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine("Press Enter to send all Dicom files to the play

ground server.");

 Console.ForegroundColor = ConsoleColor.Blue;

 Console.WriteLine("------------------------");

 while (true) {

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine("\nPress Enter. ");

 var enteredKey = Console.ReadKey(true);

 if (enteredKey.Key.Equals(ConsoleKey.Enter)) {

 var dicomFiles = new List<DicomFile>();

 string[] filesInDicomDirectory = Directory.GetDirectories(

Constants.dicomFilesPath);

 foreach (string subdir in filesInDicomDirectory) {

 foreach (string dcm in Directory.GetFiles(subdir)) {

 dicomFiles.Add(DicomFile.Open(dcm));

 }

 }

 Console.WriteLine($"Sending {dicomFiles.Count} Dicom files

 to the server.");

 Console.ForegroundColor = ConsoleColor.Red;

 await PlayGroundClient.sendDicoms(dicomFiles.ToArray(), ca

ncellationToken);

 Console.WriteLine($"Dicom datasets sent.");

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 81 of 114

 }

 else {

 Console.WriteLine("Wrong input. ");

 }

 }

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 82 of 114

15.4 PLAYGROUND.PLAYGROUNDCLIENT

using Dicom;

using Dicom.Network;

using System.Threading;

using System.Threading.Tasks;

using System.Collections.Generic;

namespace PlayGround

{

 class PlayGroundClient

 {

 private IDicomFacade dicomFacade;

 public PlayGroundClient()

 {

 // set up connection with server

 var host = "127.0.0.1";

 var port = 55555;

 var callingAE = "PlayGroundClient";

 var calledAe = "PlayGroundServer";

 dicomFacade = new DicomFacade(host, port, false, callingAE, called

Ae);

 }

 public async Task sendDicoms(DicomFile[] dicomFiles, CancellationToken

 cancellationToken)

 {

 var storeRequests = new List<DicomCStoreRequest>();

 foreach (var dicomFile in dicomFiles) {

 storeRequests.Add(new DicomCStoreRequest(dicomFile, DicomPrior

ity.Medium));

 }

 await dicomFacade.EchoAndSendRequestsAsync(storeRequests, cancella

tionToken);

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 83 of 114

15.5 PLAYGROUND.PLAYGROUNDSERVER

using Dicom;

using Dicom.Network;

using System;

using System.Threading.Tasks;

using System.Text;

using Dicom.Log;

using System.Collections.Generic;

namespace PlayGround

{

 class PlayGroundServer

 {

 public PlayGroundServer()

 {

 var port = 55555;

 var server = DicomServer.Create<CStoreSCP>(port);

 }

 }

 class CStoreSCP :

 DicomService,

 IDicomServiceProvider,

 IDicomCStoreProvider,

 IDicomCEchoProvider

 {

 private static readonly DicomTransferSyntax[] AcceptedImageTransferSyn

taxes = new DicomTransferSyntax[]

 {

 // Lossless

 DicomTransferSyntax.JPEGLSLossless,

 DicomTransferSyntax.JPEG2000Lossless,

 DicomTransferSyntax.JPEGProcess14SV1,

 DicomTransferSyntax.JPEGProcess14,

 DicomTransferSyntax.RLELossless,

 // Lossy

 DicomTransferSyntax.JPEGLSNearLossless,

 DicomTransferSyntax.JPEG2000Lossy,

 DicomTransferSyntax.JPEGProcess1,

 DicomTransferSyntax.JPEGProcess2_4,

 // Uncompressed

 DicomTransferSyntax.ExplicitVRLittleEndian,

 DicomTransferSyntax.ExplicitVRBigEndian,

 DicomTransferSyntax.ImplicitVRLittleEndian

 };

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 84 of 114

 public CStoreSCP(INetworkStream stream, Encoding fallbackEncoding, Log

ger log)

 : base(stream, fallbackEncoding, log)

 {

 }

 /* ---------- */

 private static readonly List<DicomUID> RejectedUIDs = new List<DicomUI

D>

 {

 DicomUID.EncapsulatedPDFStorage,

 DicomUID.BasicTextSRStorage

 };

 public Task OnReceiveAssociationRequestAsync(DicomAssociation associat

ion)

 {

 if (association.CalledAE != "PlayGroundServer") {

 return SendAssociationRejectAsync(

 DicomRejectResult.Permanent,

 DicomRejectSource.ServiceUser,

 DicomRejectReason.CalledAENotRecognized);

 }

 foreach (var pc in association.PresentationContexts) {

 if (RejectedUIDs.Contains(pc.AbstractSyntax)) {

 pc.SetResult(DicomPresentationContextResult.RejectAbstract

SyntaxNotSupported);

 }

 else {

 pc.AcceptTransferSyntaxes(AcceptedImageTransferSyntaxes);

 pc.SetResult(DicomPresentationContextResult.Accept);

 }

 }

 return SendAssociationAcceptAsync(association);

 }

 /* ---------- */

 public Task OnReceiveAssociationReleaseRequestAsync()

 {

 return SendAssociationReleaseResponseAsync();

 }

 public void OnReceiveAbort(DicomAbortSource source, DicomAbortReason r

eason)

 {

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 85 of 114

 }

 public void OnConnectionClosed(Exception exception)

 {

 }

 public DicomCStoreResponse OnCStoreRequest(DicomCStoreRequest request)

 {

 // storage of file

 return new DicomCStoreResponse(request, DicomStatus.Success);

 }

 public void OnCStoreRequestException(string tempFileName, Exception e)

 {

 // let library handle logging and error response

 }

 public DicomCEchoResponse OnCEchoRequest(DicomCEchoRequest request)

 {

 return new DicomCEchoResponse(request, DicomStatus.Success);

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 86 of 114

15.6 PLAYGROUND.CONSTANTS

namespace PlayGround

{

 public static class Constants

 {

 public static string dicomFilesPath = "files/";

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 87 of 114

15.7 PLAYGROUND.IDICOMFACADE

using System.Threading.Tasks;

using Dicom.Network;

using System.Threading;

using System.Collections.Generic;

namespace PlayGround

{

 /// <summary>

 /// Interface for the Dicom client facade

 /// </summary>

 public interface IDicomFacade

 {

 /// <summary>

 /// Sends an echo request first before sending the requests provided t

hrough the parameters

 /// </summary>

 /// <param name="requests">The requests to send</param>

 /// <param name="cancellationToken">The cancellation token to stop the

 task</param>

 Task EchoAndSendRequestsAsync(

 IEnumerable<DicomRequest> requests,

 CancellationToken cancellationToken);

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 88 of 114

15.8 PLAYGROUND.DICOMFACADE

using System;

using System.Threading.Tasks;

using Dicom.Network;

using Dicom.Network.Client;

using System.Threading;

using System.Collections.Generic;

using Dicom.Log;

namespace PlayGround {

 /// <summary>

 /// The wrapper class for the Dicom client according to facade pattern

 /// </summary>

 public class DicomFacade : IDicomFacade {

 private readonly Dicom.Network.Client.DicomClient dicomClient;

 /// <summary>

 /// Takes all required parameters for initializing a DicomClient and p

asses it on to the CreateClient method

 /// </summary>

 /// <param name="host">Host</param>

 /// <param name="port">Port</param>

 /// <param name="useTls">Tls security on or off</param>

 /// <param name="callingAe">Calling application entity title</param>

 /// <param name="calledAe">Called application entity title</param>

 /// <param name="logger">Logger to log events</param>

 /// <param name="associationRequestTimeoutInMs">Association request ti

meout</param>

 /// <param name="associationReleaseTimeoutInMs">Association release ti

meout</param>

 /// <param name="associationLingerTimeoutInMs">Association linger time

out</param>

 /// <param name="maximumNumberOfRequestsPerAssociation">Max number of

requests per association</param>

 public DicomFacade(string host, int port, bool useTls, string callingA

e, string calledAe,

 Logger logger = null,

 int associationRequestTimeoutInMs = DicomClientDefaults.DefaultAss

ociationRequestTimeoutInMs,

 int associationReleaseTimeoutInMs = DicomClientDefaults.DefaultAss

ociationReleaseTimeoutInMs,

 int associationLingerTimeoutInMs = DicomClientDefaults.DefaultAsso

ciationLingerInMs,

 int? maximumNumberOfRequestsPerAssociation = null)

 {

 this.dicomClient = CreateClient(

 host,

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 89 of 114

 port,

 useTls,

 callingAe,

 calledAe,

 logger,

 associationRequestTimeoutInMs,

 associationReleaseTimeoutInMs,

 associationLingerTimeoutInMs,

 maximumNumberOfRequestsPerAssociation);

 }

 private static Dicom.Network.Client.DicomClient CreateClient(params ob

ject[] args) {

 foreach (object arg in args) {

 var paramName = nameof(arg);

 if (arg is string paramAsString && string.IsNullOrWhiteSpace(p

aramAsString)) {

 throw new ArgumentNullException(paramName, $"Parameter {pa

ramName} is null, empty, or consists only of white-space.");

 }

 }

 var client = new Dicom.Network.Client.DicomClient(

 (string)args[0],

 (int)args[1],

 (bool)args[2],

 (string)args[3],

 (string)args[4],

 (int)args[6],

 (int)args[7],

 (int)args[8],

 (int?)args[9]);

 if (args[5] != null) client.Logger = (Logger)args[5];

 return client;

 }

 public async Task EchoAndSendRequestsAsync(IEnumerable<DicomRequest> r

equests,

 CancellationToken cancellationToken)

 {

 var echoRequest = new DicomCEchoRequest();

 echoRequest.OnResponseReceived = (request, response) => {

 dicomClient.Logger.Info("C-

Echo request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} with status {status}", dicomClient.Host, dicomClient.Port, dicomCl

ient.CalledAe, response.Status.ToString());

 };

 echoRequest.OnTimeout = (request, response) => {

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 90 of 114

 dicomClient.Logger.Error("C-

Echo request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} timed out", dicomClient.Host, dicomClient.Port, dicomClient.Called

Ae);

 throw new DicomNetworkException("C-Echo request timed out");

 };

 await this.dicomClient.AddRequestsAsync(requests);

 await this.dicomClient.SendAsync(cancellationToken);

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 91 of 114

15.9 DICOMGENERATOR.PACSTARGET

using System.Collections.Generic;

using System.Threading.Tasks;

using Dicom;

using Dicom.Network;

using DicomClientContext;

using System;

namespace DicomGenerator

{

 /// <summary>

 /// Sends the generated DicomDatasets to a DicomNode, usually a PACS syste

m, but it can be any capable Dicom entity

 /// </summary>

 public class PACSTarget : ITarget

 {

 /// <summary>

 /// Calling application entity title, "client" name

 /// </summary>

 private string callingTitle;

 /// <summary>

 /// Called application entity title, "server" name

 /// </summary>

 private string calledTitle;

 /// <summary>

 /// The host ip address of the called DicomNode

 /// </summary>

 private string dicomHost;

 /// <summary>

 /// The port address of the called DicomNode

 /// </summary>

 private int dicomPort;

 /// <summary>

 /// The DicomClient to send data from

 /// </summary>

 private IDicomContext client;

 /// <summary>

 /// Set class fields

 /// </summary>

 /// <param name="client">DicomContext acting as Dicom client</param>

 public PACSTarget(IDicomContext client)

 {

 this.client = client;

 }

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 92 of 114

 /// <summary>

 /// Sends the DicomDatasets to a DicomNode

 /// </summary>

 /// <param name="datasets">The list of datasets to send</param>

 public async Task Save(List<DicomDataset> datasets)

 {

 if (datasets == null) {

 var paramName = nameof(datasets);

 throw new ArgumentNullException(paramName, $"Parameter {paramN

ame} is null.");

 }

 List<DicomRequest> requests = new List<DicomRequest>();

 requests.Add(new DicomCEchoRequest());

 foreach (DicomDataset dataset in datasets) {

 requests.Add(new DicomCStoreRequest(new DicomFile(dataset)));

 }

 await client.AddRequestsAsync(requests);

 await client.SendAsync();

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 93 of 114

15.10 DICOMGENERATOR.PACSTARGETTEST

using System;

using System.IO;

using System.Collections.Generic;

using System.Threading.Tasks;

using Dicom.Network;

using Xunit;

using Dicom;

using Moq;

using DicomClientContext;

namespace DicomGenerator

{

 public class PACSTargetTest

 {

 private List<DicomDataset> testDatasetList;

 public PACSTargetTest()

 {

 testDatasetList = new List<DicomDataset>();

 DirectoryInfo testFilesDir = new DirectoryInfo("..\\..\\..\\testFi

les\\");

 foreach (var file in testFilesDir.GetFiles("*.dcm")) {

 testDatasetList.Add(DicomFile.Open(file.FullName).Dataset);

 }

 }

 public void Dispose()

 {

 testDatasetList = null;

 }

 [Fact]

 public async Task SaveTest()

 {

 // Arrange

 var dicomContextMock = new Mock<IDicomContext>();

 var pacsTarget = new PACSTarget(dicomContextMock.Object);

 // Act

 await pacsTarget.Save(testDatasetList);

 }

 [Fact]

 public async Task SaveDatasetsIsNullTest()

 {

 // Arrange

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 94 of 114

 var dicomContextMock = new Mock<IDicomContext>();

 var pacsTarget = new PACSTarget(dicomContextMock.Object);

 // Assert

 await Assert.ThrowsAsync<ArgumentNullException>(async () => {

 // Act

 await pacsTarget.Save(null);

 });

 }

 [Fact]

 public async Task SaveDatasetsCountEqualsRequestCountTest()

 {

 // Arrange

 int actualRequestsNum = 0;

 var dicomContextMock = new Mock<IDicomContext>();

 dicomContextMock.Setup(context => context.AddRequestsAsync(It.IsAn

y<List<DicomRequest>>()))

 .Callback<IEnumerable<DicomRequest>>((requests) => {

 foreach (var request in requests) {

 ++actualRequestsNum;

 }

 --actualRequestsNum;

 });

 var pacsTarget = new PACSTarget(dicomContextMock.Object);

 var expectedRequestsNum = testDatasetList.Count;

 // Act

 await pacsTarget.Save(testDatasetList);

 // Assert

 Assert.Equal(expectedRequestsNum, actualRequestsNum);

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 95 of 114

15.11 DICOMTOPACSLOADER.DICOMTOPACSLOADER

using System;

using System.Collections.Generic;

using System.Data;

using System.Data.SqlClient;

using System.Threading;

using System.Threading.Tasks;

using Common;

using DicomClientContext;

using Dicom;

using Dicom.Log;

using Dicom.Network;

using Dicom.Serialization;

using Newtonsoft.Json;

using Serilog;

using Dicom.Network.Client;

namespace DicomToPACSLoader

{

 /// <summary>

 /// Uses a given list of StudyInstanceUIDs to load SOPInstances from the d

atabase and write them as Dicom files to the filesystem

 /// </summary>

 public class DicomToPACSLoader

 {

 #region Properties

 /// <summary>

 /// Context to the database

 /// </summary>

 private ISqlDataContext sqlDataContext;

 /// <summary>

 /// Asyncronous token to stop the mask importer.

 /// </summary>

 private CancellationToken stoppingToken;

 /// <summary>

 /// The DicomClient with which the connection is set up

 /// </summary>

 /// <value>DicomClient</value>

 private IDicomContext client;

 /// <summary>

 /// The logger for context of the class, derived from the global logge

r

 /// </summary>

 /// <returns>Serilog.ILogger logging interface</returns>

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 96 of 114

 private readonly ILogger _logger = Log.ForContext<DicomToPACSLoader>()

;

 #endregion

 #region ctor

 /// <summary>

 /// Constructor, saves the sqlDataContext and the stoppingToken

 /// </summary>

 public DicomToPACSLoader(ISqlDataContext sqlDataContext, IDicomContext

 client, CancellationToken stoppingToken = default)

 {

 this.sqlDataContext = sqlDataContext;

 this.client = client;

 this.stoppingToken = stoppingToken;

 }

 #endregion

 #region Methods

 /// <summary>

 /// Loads SOPInstances from the DB and saves them to the FileSystem

 /// </summary>

 /// <returns>nothing</returns>

 public async Task Load()

 {

 client.Logger = LogManager.GetLogger("DicomClient");

 await PingPACS();

 var studyInstanceUIDs = new Dictionary<Int64, String>();

 using (var reader = await sqlDataContext.ExecuteReaderAsync(

 Program.config.SPNameGETPacsExports,

 CommandType.StoredProcedure,

 new[] {

 new SqlParameter(Program.config.SPParameterStateID, SqlDbT

ype.BigInt) { Value = 100 }

 },

 stoppingToken

)) {

 while (reader.Read()) {

 var id = reader.GetInt64(0);

 var studyInstanceUID = reader.GetString(1);

 // var stateId = reader.GetInt64(2);

 // var stateTitle = reader.GetString(3);

 studyInstanceUIDs.Add(id, studyInstanceUID);

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 97 of 114

 }

 }

 if (studyInstanceUIDs.Count == 0) {

 return;

 }

 foreach (var studyInstanceUID in studyInstanceUIDs) {

 try {

 using (SqlDataReader reader = await sqlDataContext.Execute

ReaderAsync(

 Program.config.SPNameGETDicom,

 CommandType.StoredProcedure,

 new[] {

 new SqlParameter(Program.config.SPParameterStudyInstan

ceUID, SqlDbType.VarChar, 64) { Value = studyInstanceUID.Value },

 },

 stoppingToken

) as SqlDataReader) {

 while (reader != null && reader.Read()) {

 var dsJson = reader.GetString(0);

 var dsPixel = reader.GetStream(1);

 await SendCStoreRequest(new SDDataset(dsJson, dsPi

xel));

 }

 }

 await sqlDataContext.ExecuteNonQueryAsync(

 Program.config.SPNamePUTPacsExportState,

 CommandType.StoredProcedure,

 new[] {

 new SqlParameter(Program.config.SPParameterExportID, S

qlDbType.BigInt) { Value = studyInstanceUID.Key },

 new SqlParameter(Program.config.SPParameterStateID, Sq

lDbType.BigInt) { Value = 300 }

 },

 stoppingToken

);

 }

 catch (Exception ex) {

 _logger.Error(ex.ToString());

 await sqlDataContext.ExecuteNonQueryAsync(

 Program.config.SPNamePUTPacsExportState,

 CommandType.StoredProcedure,

 new[] {

 new SqlParameter(Program.config.SPParameterExportID, S

qlDbType.BigInt) { Value = studyInstanceUID.Key },

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 98 of 114

 new SqlParameter(Program.config.SPParameterStateID, Sq

lDbType.BigInt) { Value = 900 }

 },

 stoppingToken

);

 }

 }

 }

 /// <summary>

 /// Pings the PACS to see if it is reachable, if not it throws an erro

r

 /// </summary>

 /// <returns>nothing</returns>

 private async Task PingPACS()

 {

 var EchoRequest = new DicomCEchoRequest();

 EchoRequest.OnResponseReceived = (EchoRequest, response) => {

 _logger.Information("C-

Echo request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} with status {status}", Program.config.PACS_IP, Convert.ToInt32(Pro

gram.config.PACS_PORT), Program.config.PACS_AE, response.Status.ToString());

 return;

 };

 EchoRequest.OnTimeout = (EchoRequest, response) => {

 _logger.Error("C-

Echo request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} timed out", Program.config.PACS_IP, Convert.ToInt32(Program.config

.PACS_PORT), Program.config.PACS_AE);

 throw new DicomNetworkException("C-Echo request timed out");

 };

 await this.client.AddRequestAsync(EchoRequest);

 await this.client.SendAsync();

 }

 /// <summary>

 /// Sends Dicom Dataset to PACS System

 /// </summary>

 /// <returns>nothing</returns>

 private async Task SendCStoreRequest(ISDDataset sDDataset)

 {

 DicomFile dicomFile = CreateDicomFile(sDDataset);

 DicomCStoreRequest StoreRequest = new DicomCStoreRequest(dicomFile

);

 await client.AddRequestAsync(StoreRequest);

 StoreRequest.OnResponseReceived = (StoreRequest, response) => {

 return;

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 99 of 114

 };

 StoreRequest.OnTimeout = (StoreRequest, response) => {

 _logger.Error("C-

Store request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} timed out", Program.config.PACS_IP, Convert.ToInt32(Program.config

.PACS_PORT), Program.config.PACS_AE);

 throw new DicomNetworkException("C-Move request timed out");

 };

 await client.SendAsync();

 }

 /// <summary>

 /// Creates a DicomFile from the sd Dataset

 /// </summary>

 /// <returns>dicom file</returns>

 public DicomFile CreateDicomFile(ISDDataset sDDataset)

 {

 DicomDataset dicomDataset = JsonConvert.DeserializeObject<DicomDat

aset>(sDDataset.DSJson, new JsonDicomConverter());

 dicomDataset.AddOrUpdate(DicomTag.PixelData, sDDataset.DSPixel);

 DicomFile dicomFile = new DicomFile(dicomDataset);

 return dicomFile;

 }

 #endregion

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 100 of 114

15.12 DICOMTOPACSLOADER.TOPACSLOADERTEST

using Common;

using DicomClientContext;

using Xunit;

using Moq;

using Dicom;

using Dicom.Network;

using System.IO;

using System.Threading;

using System.Data;

using System.Data.SqlClient;

using System.Threading.Tasks;

using System.Collections.Generic;

namespace DicomToPACSLoader

{

 public class ToPACSLoaderTest

 {

 [Fact(DisplayName = "Load Test")]

 public void CreateDicomFileTest()

 {

 // Arrange

 var sqlDataContext = new Mock<ISqlDataContext>();

 var dicomContext = new Mock<IDicomContext>();

 var toPACSLoader = new DicomToPACSLoader(sqlDataContext.Object, di

comContext.Object, CancellationToken.None);

 var SDDatasetMoq = new Mock<ISDDataset>();

 var DSJson = File.ReadAllText("DSJson.json");

 SDDatasetMoq

 .Setup(m => m.DSPixel)

 .Returns(new byte[] { 0x20 });

 SDDatasetMoq

 .Setup(m => m.DSJson)

 .Returns(DSJson);

 // Act

 var result = toPACSLoader.CreateDicomFile(SDDatasetMoq.Object);

 var tag = result.Dataset.GetValues<string>(DicomTag.SOPClassUID);

 // Assert

 Assert.Equal("1.2.840.10008.5.1.4.1.1.7", tag[0]);

 }

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 101 of 114

 [Fact]

 public async Task LoadTest()

 {

 //Arrange

 var expectedPatientName = "Dimitri";

 DicomDataset actualDicomDataset = null;

 var sqlDataContextMock = new Mock<ISqlDataContext>();

 var GETPacsExportsDataReaderMock = new Mock<IDataReader>();

 var GETDicomReaderMock = new Mock<IDataReader>();

 var imageStreamMock = new Mock<Stream>();

 GETPacsExportsDataReaderMock.Setup(reader => reader.GetInt64(0))

 .Returns(1);

 GETPacsExportsDataReaderMock.Setup(reader => reader.GetString(1))

 .Returns(DicomUIDGenerator.GenerateDerivedFromUUID().UID);

 var readGETPacsExportsDataReturnQueue = new Queue<bool>();

 readGETPacsExportsDataReturnQueue.Enqueue(true);

 readGETPacsExportsDataReturnQueue.Enqueue(false);

 GETPacsExportsDataReaderMock.Setup(reader => reader.Read())

 .Returns(() => readGETPacsExportsDataReturnQueue.Dequeue());

 sqlDataContextMock.Setup(context => context.ExecuteReaderAsync(Pro

gram.config.SPNameGETPacsExports, It.IsAny<CommandType>(), It.IsAny<SqlParamet

er[]>(), It.IsAny<CancellationToken>()))

 .Returns(Task.FromResult(GETPacsExportsDataReaderMock.Object))

;

 GETDicomReaderMock.Setup(reader => reader.GetString(0))

 .Returns("{\"00100010\":{\"vr\":\"PN\",\"Value\":[{\"Alphabeti

c\":\"Dimitri\"}]}}");

 //GETDicomReaderMock.Setup(reader => reader.GetStream(1))

 // .Returns(imageStreamMock.Object);

 var readGETDicomReturnQueue = new Queue<bool>();

 readGETDicomReturnQueue.Enqueue(true);

 readGETDicomReturnQueue.Enqueue(false);

 GETPacsExportsDataReaderMock.Setup(reader => reader.Read())

 .Returns(() => readGETDicomReturnQueue.Dequeue());

 sqlDataContextMock.Setup(context => context.ExecuteReaderAsync(Pro

gram.config.SPNameGETDicom, It.IsAny<CommandType>(), It.IsAny<SqlParameter[]>(

), It.IsAny<CancellationToken>()))

 .Returns(Task.FromResult(GETDicomReaderMock.Object));

 var dicomContext = new Mock<IDicomContext>();

 dicomContext.Setup(context => context.AddRequestAsync(It.IsAny<Dic

omCStoreRequest>()))

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 102 of 114

 .Callback<DicomRequest>((request) => actualDicomDataset = requ

est.Command);

 var toPACSLoader = new DicomToPACSLoader(sqlDataContextMock.Object

, dicomContext.Object, CancellationToken.None);

 // Act

 await toPACSLoader.Load();

 // Assert

 Assert.Equal(expectedPatientName, actualDicomDataset.GetSingleValu

e<string>(DicomTag.PatientName));

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 103 of 114

15.13 JOBRECEIVER.PACSTARGET

using System;

using System.Threading.Tasks;

using System.Collections.Generic;

using Serilog;

using Dicom;

using Dicom.Log;

using Dicom.Network;

using DicomClientContext;

namespace JobReceiver

{

 /// <summary>

 /// Class that sends the encapsulated PDF report to the PACS

 /// </summary>

 public class PacsTarget

 {

 #region Properties

 /// <summary>

 /// The DicomClient with which the connection is set up

 /// </summary>

 /// <value>DicomClient</value>

 private IDicomContext client;

 /// <summary>

 /// The logger for context of the class, derived from the global logge

r

 /// </summary>

 /// <returns>Serilog.ILogger logging interface</returns>

 private readonly ILogger _logger = Log.ForContext<PacsTarget>();

 #endregion

 /// <summary>

 /// Constructor, initializes the Dicom LogManager

 /// </summary>

 public PacsTarget()

 {

 LogManager.SetImplementation(new SerilogManager(Log.ForContext<Pac

sTarget>()));

 }

 /// <summary>

 /// Sends a C-Echo request to the PACS to check the connection

 /// </summary>

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 104 of 114

 /// <returns>Task that completes when the request times out or is succ

essful</returns>

 private async Task PingPACS()

 {

 var request = new DicomCEchoRequest();

 request.OnResponseReceived = (request, response) => {

 _logger.Information("C-

Echo request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} with status {status}", client.Host, Program.config.PACS_PORT, clie

nt.CalledAe, response.Status.ToString());

 return;

 };

 request.OnTimeout = (request, response) => {

 _logger.Error("C-

Echo request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} timed out", client.Host, Program.config.PACS_PORT, client.CalledAe

);

 throw new DicomNetworkException("C-Echo request timed out");

 };

 await this.client.AddRequestAsync(request);

 await this.client.SendAsync();

 }

 /// <summary>

 /// Sends a C-

Store request to the PACS with the encapsulated PDF report

 /// </summary>

 /// <param name="resultReport">The encapsulated PDF report that will b

e sent to the PACS</param>

 /// <returns>Task that completes when the request times out or is succ

essful</returns>

 private async Task sendCStoreRequest(DicomDataset resultReport)

 {

 DicomCStoreRequest request = new DicomCStoreRequest(new DicomFile(

resultReport), DicomPriority.Medium);

 await client.AddRequestAsync(request);

 request.OnResponseReceived = (request, response) => {

 _logger.Information("C-

Move request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} with status {status}", client.Host, Program.config.PACS_PORT, clie

nt.CalledAe, response.Status.ToString());

 return;

 };

 request.OnTimeout = (request, response) => {

 _logger.Error("C-

Move request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} timed out", client.Host, Program.config.PACS_PORT, client.CalledAe

);

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 105 of 114

 throw new DicomNetworkException("C-Move request timed out");

 };

 await client.SendAsync();

 }

 /// <summary>

 /// Pings the PACS and sends the encapsulated PDF reports to the PACS

 /// </summary>

 /// <param name="reports">A list of encapsulated PDF reports that will

 be sent to the PACS</param>

 /// <param name="client">DicomContext acting as Dicom client</param>

 public async Task SendReports(List<DicomDataset> reports, IDicomContex

t client)

 {

 if (reports == null) {

 var paramName = nameof(reports);

 throw new ArgumentNullException(paramName, $"Parameter {paramN

ame} is null.");

 }

 else if (client == null) {

 var paramName = nameof(client);

 throw new ArgumentNullException(paramName, $"Parameter {paramN

ame} is null.");

 }

 this.client = client;

 client.Logger = LogManager.GetLogger("DicomClient");

 await PingPACS();

 foreach (DicomDataset ds in reports) {

 await sendCStoreRequest(ds);

 }

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 106 of 114

15.14 JOBRECEIVER.PACSTARGETTEST

using System;

using System.IO;

using System.Collections.Generic;

using System.Threading.Tasks;

using Xunit;

using Moq;

using DicomClientContext;

using Dicom;

using Dicom.Network;

namespace JobReceiver

{

 public class PacsTargetTest : IDisposable

 {

 private List<DicomDataset> testDatasetList;

 public PacsTargetTest()

 {

 testDatasetList = new List<DicomDataset>();

 DirectoryInfo testFilesDir = new DirectoryInfo("..\\..\\..\\testFi

les\\");

 foreach (var file in testFilesDir.GetFiles("*.dcm")) {

 testDatasetList.Add(DicomFile.Open(file.FullName).Dataset);

 }

 }

 public void Dispose()

 {

 testDatasetList = null;

 }

 [Fact]

 public async Task TestSendReports()

 {

 // Arrange

 var dicomContextMock = new Mock<IDicomContext>();

 var pacsTarget = new PacsTarget();

 // Act

 await pacsTarget.SendReports(testDatasetList, dicomContextMock.Obj

ect);

 }

 [Fact]

 public async Task SaveDatasetsIsNullTest()

 {

 // Arrange

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 107 of 114

 var dicomContextMock = new Mock<IDicomContext>();

 var pacsTarget = new PacsTarget();

 // Assert

 await Assert.ThrowsAsync<ArgumentNullException>(async () => {

 // Act

 await pacsTarget.SendReports(null, dicomContextMock.Object);

 });

 }

 [Fact]

 public async Task SaveDatasetsCountEqualsRequestCountTest()

 {

 // Arrange

 int actualRequestsNum = 0;

 var dicomContextMock = new Mock<IDicomContext>();

 dicomContextMock.Setup(context => context.AddRequestsAsync(It.IsAn

y<IEnumerable<DicomRequest>>()))

 .Callback<IEnumerable<DicomRequest>>((requests) => {

 foreach (var request in requests) {

 ++actualRequestsNum;

 }

 --actualRequestsNum;

 });

 var pacsTarget = new PacsTarget();

 var expectedRequestsNum = testDatasetList.Count;

 // Act

 await pacsTarget.SendReports(testDatasetList, dicomContextMock.Obj

ect);

 // Assert

 Assert.Equal(expectedRequestsNum, actualRequestsNum);

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 108 of 114

15.15 REPORTSENDER.PACSTARGET

using Dicom.Network;

using System;

using System.Threading.Tasks;

using System.Collections.Generic;

using Serilog;

using Dicom;

using Dicom.Log;

using DicomClientContext;

namespace ReportSender

{

 /// <summary>

 /// Class that sends the encapsulated PDF report to the PACS

 /// </summary>

 public class PacsTarget

 {

 #region Properties

 /// <summary>

 /// The DicomClient with which the connection is set up

 /// </summary>

 /// <value>DicomClient</value>

 private IDicomContext client;

 /// <summary>

 /// The logger for context of the class, derived from the global logge

r

 /// </summary>

 /// <returns>Serilog.ILogger logging interface</returns>

 private readonly ILogger _logger = Log.ForContext<PacsTarget>();

 #endregion

 /// <summary>

 /// Constructor, initializes the Dicom LogManager

 /// </summary>

 public PacsTarget()

 {

 LogManager.SetImplementation(new SerilogManager(Log.ForContext<Pac

sTarget>()));

 }

 /// <summary>

 /// Sends a C-Echo request to the PACS to check the connection

 /// </summary>

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 109 of 114

 /// <returns>Task that completes when the request times out or is succ

essful</returns>

 private async Task PingPACS()

 {

 var request = new DicomCEchoRequest();

 request.OnResponseReceived = (request, response) => {

 _logger.Information("C-

Echo request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} with status {status}", client.Host, Program.config.PACS_PORT, clie

nt.CalledAe, response.Status.ToString());

 return;

 };

 request.OnTimeout = (request, response) => {

 _logger.Error("C-

Echo request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} timed out", client.Host, Program.config.PACS_PORT, client.CalledAe

);

 throw new DicomNetworkException("C-Echo request timed out");

 };

 await this.client.AddRequestAsync(request);

 await this.client.SendAsync();

 }

 /// <summary>

 /// Sends a C-

Store request to the PACS with the encapsulated PDF report

 /// </summary>

 /// <param name="resultReport">The encapsulated PDF report that will b

e sent to the PACS</param>

 /// <returns>Task that completes when the request times out or is succ

essful</returns>

 private async Task sendCStoreRequest(DicomDataset resultReport)

 {

 DicomCStoreRequest request = new DicomCStoreRequest(new DicomFile(

resultReport), DicomPriority.Medium);

 await client.AddRequestAsync(request);

 request.OnResponseReceived = (request, response) => {

 _logger.Information("C-

Move request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} with status {status}", client.Host, Program.config.PACS_PORT, clie

nt.CalledAe, response.Status.ToString());

 return;

 };

 request.OnTimeout = (request, response) => {

 _logger.Error("C-

Move request to PACS with IP: {ip}, Port: {port}, AE-

Title: {ae} timed out", client.Host, Program.config.PACS_PORT, client.CalledAe

);

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 110 of 114

 throw new DicomNetworkException("C-Move request timed out");

 };

 await client.SendAsync();

 }

 /// <summary>

 /// Pings the PACS and sends the encapsulated PDF reports to the PACS

 /// </summary>

 /// <param name="reports">A list of encapsulated PDF reports that will

 be sent to the PACS</param>

 /// <param name="client">DicomContext acting as Dicom client</param>

 public async Task SendReports(List<DicomDataset> reports, IDicomContex

t client)

 {

 if (reports == null) {

 var paramName = nameof(reports);

 throw new ArgumentNullException(paramName, $"Parameter {paramN

ame} is null.");

 }

 else if (client == null) {

 var paramName = nameof(client);

 throw new ArgumentNullException(paramName, $"Parameter {paramN

ame} is null.");

 }

 this.client = client;

 client.Logger = LogManager.GetLogger("DicomClient");

 await PingPACS();

 foreach (DicomDataset ds in reports) {

 await sendCStoreRequest(ds);

 }

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 111 of 114

15.16 REPORTSENDER.REPORTSENDERTEST

using System;

using System.IO;

using System.Threading.Tasks;

using System.Collections.Generic;

using Dicom;

using Dicom.Network;

using Moq;

using Xunit;

using DicomClientContext;

namespace ReportSender.Test

{

 public class ReportSenderTest : IDisposable

 {

 private List<DicomDataset> testDatasetList;

 public ReportSenderTest()

 {

 testDatasetList = new List<DicomDataset>();

 DirectoryInfo testFilesDir = new DirectoryInfo("..\\..\\..\\testFi

les\\");

 foreach (var file in testFilesDir.GetFiles("*.dcm")) {

 testDatasetList.Add(DicomFile.Open(file.FullName).Dataset);

 }

 }

 public void Dispose()

 {

 testDatasetList = null;

 }

 [Fact]

 public async Task TestSendReports()

 {

 // Arrange

 var dicomContextMock = new Mock<IDicomContext>();

 var pacsTarget = new PacsTarget();

 // Act

 await pacsTarget.SendReports(testDatasetList, dicomContextMock.Obj

ect);

 }

 [Fact]

 public async Task SaveDatasetsIsNullTest()

 {

 // Arrange

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 112 of 114

 var dicomContextMock = new Mock<IDicomContext>();

 var pacsTarget = new PacsTarget();

 // Assert

 await Assert.ThrowsAsync<ArgumentNullException>(async () => {

 // Act

 await pacsTarget.SendReports(null, dicomContextMock.Object);

 });

 }

 [Fact]

 public async Task SaveDatasetsCountEqualsRequestCountTest()

 {

 // Arrange

 int actualRequestsNum = 0;

 var dicomContextMock = new Mock<IDicomContext>();

 dicomContextMock.Setup(context => context.AddRequestsAsync(It.IsAn

y<IEnumerable<DicomRequest>>()))

 .Callback<IEnumerable<DicomRequest>>((requests) => {

 foreach (var request in requests) {

 ++actualRequestsNum;

 }

 --actualRequestsNum;

 });

 var pacsTarget = new PacsTarget();

 var expectedRequestsNum = testDatasetList.Count;

 // Act

 await pacsTarget.SendReports(testDatasetList, dicomContextMock.Obj

ect);

 // Assert

 Assert.Equal(expectedRequestsNum, actualRequestsNum);

 }

 }

}

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 113 of 114

16 GIT VERSIONING

Gabriel Schafflützel Implement a Dicom Client Context Class for Unit Testing

Wednesday, 21 April 2021 Page 114 of 114

